RENDERING MASSIVE VIRTUAL WORLDS

SIGGRAPH 2013 Courses

Anaheim, California, July 21-25 2013

Graham Sellers
Advanced Micro Devices

J.M.P. van Waveren
ID Software

Patrick Cozzi, Kevin Ring
Analytical Graphics

Emil Persson, Joel de Vahl
Avalanche Studios



Abstract

In recent years, connectivity of systems has meant that online worlds with huge stream-
ing data sets have become common and widely available. From applications such as map
rendering and virtual globes to online gaming, users expect online content to be presented
in a timely and seamless manner, and expect the volume and variety of offline content to
match that which is available online. Generating, retrieving and displaying this content to
users presents a number of considerable challenges. This course addresses some real-world
solutions to the problems presented in the rendering of massive virtual worlds.

Massive worlds present many daunting challenges. In our first talk, we introduce the two
most prominent challenges: data management and rendering artifacts. We look at handling
massive datasets like real-world terrain with out-of-core rendering, including parallelism,
cache hierarchies on the client and in the cloud, and level-of-detail. Then we explore handling
jittering artifacts due to performing vertex transform on large world coordinates with 32-bit
precision on commodity GPUs, and handling z-fighting artifacts due to lack of depth buffer
precision with large near-to-far distances. This serves as an introduction to the following
talk, World-Scale Terrain Rendering.

Rendering small and medium scale terrain is fairly straightforward these days, but ren-
dering terrain for a detailed world the size of Earth is much more challenging. In our second
talk, we discuss the design and implementation of a terrain engine that can render a zoomed-
out view of the entire globe all the way down to a zoomed-in view where sub-meter details are
visible. We discuss processing “off the shelf” terrain data for efficient streaming and render-
ing, an asynchronous load pipeline for bringing chunks of terrain through a cache hierarchy,
efficiently culling chunks of terrain that are below the horizon, driving terrain level-of-detail
selection based on an estimate of pixel error, and more. With these techniques, we are
able to achieve excellent performance even in the constrained environment of WebGL and
JavaScript running inside a web browser.

Once we have dealt with the topic of storing and streaming huge amounts of content,
we must next contend with production and generation of that content. The next talk will
go through the production pipeline at Avalanche Studios and the issues encountered when
filling Just Cause 2 with interesting content. It is mix of horror stories, good practices, and
lessons learned and applied to titles currently in production. Issues discussed will include
the reliability problems for the content tool-chain, the long turn-around times we had, un-
documented and poorly understood data dependencies, and all the problems that followed
with these. Then we will cover how we have solved these problems for our current content
pipeline. We will also talk about our approach to authoring the landscape, vegetation and



locations for our large game worlds, and how we maintain productivity without sacrificing
variation.

Many of the concepts discussed to this point address efficient generation, storage, retrieval
and transmission of content. Recent advances in graphics hardware allow GPUs to assist in
functions such as streaming texture data, managing sparse data sets and providing reasonable
visual results in cases where not all of the data is available to render a scene. In the next
talk, we take a deep-dive into AMD’s partially resident texture hardware, briefly cover
sparse texture extensions for OpenGL and then explore some use cases for the hardware and
software features, including some live demos.

In our final presentation, we discuss the practical challenges of integrating support for
hardware virtual texturing into a real-world game engine, idTechb, which powers RAGE
and a number of other titles. We will describe cases where hardware virtual texturing ‘just
worked’, and cases where more effort was required to integrate the technology into an existing
engine, whilst maintaining support for software virtual texturing without loss of performance
or features.

We assume that course participants are familiar with modern graphics rendering tech-
niques, data compression, cache hierarchies and graphics hardware acceleration. We will
discuss in some detail virtual memory systems, culling techniques, level-of-detail selection
and other related techniques.



About the Authors

Graham Sellers
Advanced Micro Devices
graham.sellers@amd.com

Graham Sellers is the manager of the OpenGL driver team and a software architect at AMD.
He represents AMD at the OpenGL ARB and Khronos Group and is responsible for the
design and delivery of new features in AMD’s OpenGL implementation, including extensions
and new versions of the OpenGL API. He has authored over 20 OpenGL extensions, many
of which are now part of the core API specification. He is also co-author of the OpenGL
SuperBible and the OpenGL Programming Guide. He holds a Masters’ degree in Engineering
from the University of Southampton, UK.

Patrick Cozzi

Analytical Graphics, Inc. and University of Pennsylvania

pjcozzi@siggraph. org

Patrick Cozzi is coauthor of 3D Engine Design for Virtual Globes, coeditor of OpenGL
Insights, and a contributor to GPU Pro 4, Game Engine Gems 2, and SIGGRAPH. At
Analytical Graphics, Inc., he leads the graphics development of Cesium, a WebGL virtual
globe. He teaches GPU Programming and Architecture at the University of Pennsylvania,
where he received a master’s degree in computer science.

Keuvin Ring

Analytical Graphics, Inc.

kevin@kotachrome.com

Kevin Ring is coauthor of 3D Engine Design for Virtual Globes and the lead architect of
STK Components at Analytical Graphics, Inc. In recent years, he has immersed himself
in the problem of massive terrain rendering and analysis while developing the terrain and
imagery rendering engine for Cesium, a WebGL virtual globe. Kevin received a bachelor’s
degree in Computer Science from Rensselaer Polytechnic Institute.

Emil Persson
Avalanche Studios



emil.persson@avalanchestudios.se

Emil Persson is the Head of Reseach at Avalanche Studios, where he is conducting forward-
looking research, with the aim to be relevant and practical for game development, as well as
setting the future direction for the Avalanche Engine. Previously, Emil was an ISV Engineer
in the Developer Relations team at ATI/AMD. He assisted tier-1 game developers with the
latest rendering techniques, identifying performance problems and applying optimizations.
He also made major contributions to SDK samples and technical documentation.

Joel de Vahl

Avalanche Studios

joel.de.vahl@avalanchestudios. se

Joel de Vahl works as a Senior Engine Programmer at Avalanche Studios, focusing primarily
on graphics and engine technology development. Previously, Joel worked as an Engine
Programmer at Starbreeze Studios, focusing on lighting and rendering technology.

J.M.P. van Waveren
ID Software
mrelusive@idsoftware. com

J.M.P. van Waveren studied computer science at Delft University of Technology in the
Netherlands. He has been developing technology for computer games for over a decade

and has been involved in the research for, and development of various triple-A game titles
such as: Quake III Arena, Return to Castle Wolfenstein, DOOM III and RAGE.



Course Outline

10 minutes: Introduction
Graham Sellers

1. Introduction to the course and its goals, course overview and introduction of all speak-
ers

2. Introduction to virtual world rendering

30 minutes: Handling Planetary Scale Datasets
Patrick Cozzi

1. An overview of handling massive datasets such as real-world terrain with out-of-core
rendering, including parallelism, cache hierarchies on the client and in the cloud, and
level-of-detail.

2. Handling jittering artifacts caused by performing vertex transform on large world co-
ordinates with 32-bit precision on commodity GPUs, and handling z-fighting artifacts
due to lack of depth buffer precision with large near-to-far distances.

30 minutes: World-Scale Terrain Rendering
Kevin Ring

1. Processing and organizing data for efficient streaming to the client system: tile pyra-
mids, mesh simplification.

2. Selecting the subset of terrain to render in a given view by estimating screen-space
error.

3. Mapping terrain to an accurate model of the Earth, like the WGS84 ellipsoid.
4. Culling terrain, especially terrain that is below the horizon.

5. The client-side pipeline for loading and preparing terrain.

6. Using the imagery that’s available, even when it’s not ideal, including;:

(a) Re-projecting web Mercator imagery on the GPU.

(b) Rendering multiple textures to cover a given region of terrain.



30 minutes: Populating a Massive Game World
Emil Persson, Joel de Vahl

1. Filling a massive game (Just Cause 2) with interesting content.

2. Content production and pipeline issues associated with massive procedural content
generation.

3. Authoring landscapes and placing vegetation and other entities.

4. Maintaining productivity without sacrificing variety.

30 minutes: Hardware Virtual Texturing
Graham Sellers

1. Hardware architecture of AMD’s ‘partially resident texture’ support
2. Driver support and software API
3. Use cases and technical demos

4. Future development

30 minutes: High Quality Software and Hardware Virtual Textures
J.M.P. van Waveren

1. Virtual texturing in idTechb (RAGE)
2. Integrating support for hardware virtual texturing in idTechb
3. Supporting trilinear and anisotropic filtering in hardware and software

4. Addressing practical limitations to hardware virtual texturing

10+ minutes: Conclusion and Discussion
All speakers



Contents

1

3

Introduction

1.1 Virtual Worlds . . . . . . . . .
Planetary Scale Datasets

World-Scale Terrain Rendering

3.1 Introduction - Massive worlds render massive quantities of terrain . . . . . .
3.2 Organizing and processing terrain data . . . . . . . . . ... ... ... ...
3.3 Tile selection for rendering . . . . . . . . ... Lo
3.4 Lifeofatile . . . .. . . .
3.4.1 Create imagery skeletons . . . . . . .. . ... L
3.4.2 Request . . . . . .
3.4.3 Transform . . . . .. ..
3.4.4 Create reSOUTCeS . . . . . . . . .o
3.45 Replacement . . . . . ...
3.5 Terrain and imagery shaders . . . . . .. .. ..o
3.6 Horizon culling . . . . . . . ..
3.7 Map reprojection on the GPU . . . . . . . ... ... . ... ... ...
3.8 Acknowledgements . . . .. ...

Populating a Massive Game World
4.1 Introduction . . . . . . . . L

4.2 Build system . . .. ..

10
10

12

44
44
45
48

ol
53
53
54

%)
26
29
60



4.2.1 Issues with the content build system . . . . . ... ... ... .... 61

4.2.2 Untangling the mess . . . . . . . .. ... L 62
4.2.3 Code build system . . . . .. .. oo oo 62
4.3 Content Production . . . . . . . ... ... oo 64
4.3.1 Modularization . . . ... ..o 64
4.3.2 Landscape authoring . . . . . . . .. .. ... L 64
4.4 Bringing it tolife . . . . . ..o 66
4.4.1 World simulation . . . .. .. ... 0o 66
4.4.2 TLandmarks . . . . . . . L 67
4.4.3 Lighting . . . . . . . e 67
4.5 SUMmMAary . . . . ... e e e 69
4.6 References . . . . . . . L 69
Hardware Virtual Texturing 70
5.1 Virtual Memory . . . . . . . .. 70
5.2 Page/Tile Residency Information . . . . ... ... ... ... ... ..... 75
5.3 Sparse Texture Use Cases & Future Development . . . . ... .. ... ... 75
5.3.1 Very Large Texture Arrays . . . . . . . . . .. .. ... ... ... 75
5.3.2 Incomplete Mip-map Chains . . . . . ... ... ... ... ...... 7
5.3.3  Truly Sparse Textures . . . . .. ... .. ... ... ... ... ... 78
5.4 Current Limitations and Thoughts on the Future . . . . .. ... ... ... 78
High Quality Software and Hardware Virtual Textures 80
6.1 High Quality Software Virtual Textures . . . . . . . . ... ... ... .... 80
6.1.1 Explicit Page Table LOD . . . . . ... .. ... ... ... .. .. .. 81
6.1.2  Tri-Linear Filtering and LOD Clamping . . . . . . ... .. ... .. 82
6.1.3 Texture Upsampling . . . . . . . .. .. ... .. ... ... 83
6.1.4 Direct Texture Access . . . . . . . . . ..o 84
6.2 Hardware Virtual Textures . . . . . . . . . . . . ... 84
6.2.1 PRT Page Management . . . .. .. ... .. ... ... ....... 85
6.2.2 PRT Size Limitation . . . . . . . ... ... ... ... ... ..... 85



6.2.3 Compressed PRT Pages
6.2.4 Borderless PRT Pages



Chapter 1

Introduction

This course material covers the practical details involved in rendering massive virtual worlds.
At SIGGRAPH 2012, speakers Obert, van Waveren and Sellers presented an overview of
hardware accelerated virtual texturing and how it was used in the video game RAGE, by
id Software. Expanding on the topic, this course covers more diverse subjects such as con-
tent generation and creation, streaming and out-of-core rendering, and the practicalities of
integrating very large virtual texture and geometry datasets into production pipelines and
real-world rendering applications.

1.1  Virtual Worlds

In this context, we use the term wvirtual to mean data that is pageable, incomplete or where
some or all of it is inaccessible at any given point in time. In general, these types of dataset
fall into one of a few categories:

e Procedurally generated worlds consist of data that is created algorithmically, perhaps
using an artist guided process either during production or just-in-time. Such data sets
represent an overall design goal rather than something that must be conveyed with a
great deal of accuracy.

e Real datasets such as satellite imagery, geospatial and survey data must be presented
to the user with high fidelity and renderings should faithfully convey the world from
which they were recorded.

e Artist generated data sets may not be as large as real-world data sets such as GIS data,
but must nonetheless be stored, transmitted and rendered with accuracy demanded by
the artist who authored them. Thus they present similar attributes and challenges as
any other large data set.

10



Regardless of the source of the data set, similar challenges are encountered during their
interactive or real-time rendering. For example, these data sets generally do not fit into a
graphics processor’s on-board memory and may not be entirely present in readily accessible
form on the end-user’s machine. Some or all of the data may be available over a network, or
perhaps be stored locally in a heavily compressed form.

To further complicate matters, generation, pre-processing, authoring, managing and stor-
ing the volume of data required by modern virtual environment rendering applications is
non-trivial. Such data sets can easily consume many terabytes of data when uncompressed.
The number of discrete entities in a single virtual world can be very high — typically many
tens of thousands, and perhaps into the millions. Clearly, having an artist design and place
each individual tree, shrub and flower in a virtual forest is intractable. Therefore, we must
find methods to generate huge numbers of entities, placing them semi-automatically, whilst
allowing an artist to guide the process and edit the final results.

11



Chapter 2

Planetary Scale Datasets

Foundations for Rendering
Massive Worlds

This is an incomplete draft. Get the latest version
at http://cesium.agi.com/publications.html

Patrick Cozzi, @pjcozzi f

R4 .
Analytical Graphics, Inc. k ... SIGGRAPH 2013} //
University of Pennsylvania ‘ \ ‘ i

We’re going to look at some fundamental problems when rendering massive worlds. These
problems are interesting — or perhaps even annoying — in that a typical graphics engine
may never need to deal with them. However, when we scale our world up to a massive
size and still want fine-grained detail, precision problems start to manifest themselves as
rendering artifacts.

Over the years we’ve seen many forum posts like “I wrote a simple terrain engine and
everything was great, but then I tried to cover world-wide terrain, and now there is z-
fighting. Why?” and “I'm rendering the Earth using meters as units, and when 1 zoom in,
static objects start to bounce around. Why?”

In this talk, we intuitively explain why, and present robust solutions that work for open

12



worlds and make very few assumptions, e.g., we can’t necessarily put fog in the distant or
ask artists to design a level such that the maximum view distance is only so far.

We’ve used these solutions in our 3D tools at Analytical Graphics, Inc. with great success.
Some of them are well known and have been in use literally since I was in high school. Others
are more recent. In both cases, I want to motivate their use and provide implementation
tips.

Our Work

SIGGRAPH2013 /’4

In our work at AGI, we simulate the real-world, from ground stations surrounded by
high- resolution terrain and sub-meter imagery...

13



Our Work

SIGGRAPH2013\/_4

... to satellites in high-earth orbit at 40,000 km above the Earth...

14



Our Work

[») /'
SIGGRAPH20134(_

... to interplanetary missions to the moon or mars.

15



Our Work

SIGGRAPH 2018»5‘

We’ve even helped NORAD with the very important job of tracking Santa on Christmas
Eve.

16



Our Work

SIGGRAPH2013{(

—

These use cases require massive scale in terms of view distances and precision for coor-
dinate systems. For example, we may be zoomed in close to a satellite orbiting the Earth,
and still want to see the sun in the distance. Satellites have solar panels that point towards
the sun.

17



Our Work

=

SIGGRAPH2013{(

—

A lot of classic tricks like eliminating z-fighting by introducing fog in the distance to
preserve a sane far-to-near ratio won’t always work for us. For example, some of our users
want to see all the active unclassified satellites in space at the same time.

18



Agenda

* Robust solutions for
— Z-Fighting
— lJittering

SIGGRAPH2013\/_4

Today, I'm going to present rendering techniques we use to deal with these type of scale
while still allowing fine-grained detail. In particular, we are going to solve two types of
rendering artifacts:

e z-fighting
e jittering
The presented solutions are very general and apply to geospatial visualization like work

done by Esri and virtual globes like Google Earth and NASA World Wind. They also apply
to massive- world games.

We’ll start by looking at examples of z-fighting and jittering, then we’ll look at the cause
of each, and solutions.

19



Z-Fighting

SIGGRAPH2013},

Here we have a Shadow UAV flying a mission through the mountains.

There are no z-fighting artifacts in this images, but if we use a close near plane and a
very distant far plane, we see z-fighting artifacts like these...

20



Z-Fighting

[eck{led & dims z=fdkiog. e 1 e de dafarlt bedrieor of Sk

There is z-fighting throughout the distant mountains. I circled a few of the major areas.

Z-fighting is even more irritating when things are moving as shown in the video |videos/z-
fighting.wmv]|. I promise that our software doesn’t do this by default; I hacked it to make
the video.

Notice how there is no z-fighting closer to the viewer, for example, with the UAV or
nearby foothills.

21



Jitter

SIGGRAPH2013\/_4

The other artifact we’re going to look at today is jitter.

Here we have the Landsat 7, which is an imaging satellite in orbit at about 700,000 m
above Earth. What’s the different between the top image and the bottom image?

In both images, the billboard and text have the same world position. However, a small
change in the viewer position resulted in the white polyline representing the satellite’s orbit,
to bounce — or jitter — as can be seen at the billboard, where the orbit on the top is above
the billboard, and the orbit on the bottom is below. (This is also noticed where the orbit
overlaps the yellow orbit on the right).

Like z-fighting, jittering is most noticeable and irritating when things are moving. In
this video |videos/jitter.wmv|, we see a red polyline that looks innocent enough. As we
zoom in and rotate, it starts to bounce around. This polyline represents the boundary for
Pennsylvania, and it is defined in W(GS84, which is a coordinate system that has an origin
at the center of the Earth. Now we zoom out and see the Landsat 7 satellite again. With
the video it is easy to see the polyline bounce up and down.

For this video, I modified our engine to show jitter for the polyline, but not for the
billboard and text.

22



Z-Fighting Causes

* Coplanar geometry

* Non-linear relationship between z_ _and
z

window
— Zaye aNd Z3 4., relationship is controlled by the
f/n ratio

— Bigger f/n: greater nonlinearity

SIGGRAPH20134(_,

Now let’s take a closer look at z-fighting in massive worlds and solutions.

The classic z-fighting example is a piece of paper on a desk. If the paper and the desk are
coplanar, we can see z-fighting artifacts due to floating-point round-off error. This particular
case can be solved many ways including:

e Slightly adjusting the geometry, either when authoring or in a view-dependent way at
runtime with a call like polygonOffset’.

e Stenciling. Stencil out the paper. Render the desk. Render the paper.

However, z-fighting can occur when geometry is not coplanar, even when geometry is

far apart — in some sense. This is due to the non-linear relationship between z in eye
coordinates and z in window coordinates when using a perspective projection.

Thttp://www.opengl.org/archives/resources/faq/technical/polygonoffset.htm

23


http://www.opengl.org/archives/resources/faq/technical/polygonoffset.htm

Z-Fighting Causes

* z is proportionalto 1/z_,.

window

1

~~
SIGGRAPH2013¢(_,
Image courtesy http://www.irtualglobebook.com -

The relationship between z-eye and z-window is controlled by the far-to-near ratio. The
bigger the ratio the greater nonlinearity.

Why? When using perspective, if we multiply out the model-view-projection matrix,
perspective division, and viewport transform, z-window becomes:
Z-window = ((((f + n) / (f --- n)) + (2fn / z-eye(f ---n))) + 1) / 2

(in the common case when the depth range near is zero and far is one).

For a given perspective projection, everything on the right-hand side is constant except
for z-eye, therefore z-window is proportional to 1/z-eye. This is the result of the perspec-
tive divide, which causes perspective foreshortening, making objects in the distance appear
smaller.

As we can see in the graph, a small change in z-eye when z-eye is small results in a big
change in 1/z-eye because 1/z-eye is a quickly moving function here. That same change
in z-eye when z-eye is large results in a smaller change to 1/z-eye because 1/z-eye is slowly
moving then. In the later case, a small change to z-eye may yield the same z-window, creating
rendering artifacts.

24



Z-Fighting Causes

* Relationship between z
dependsonn and £.

1
n

and z_. . also

window

0 Zeye— 1 100

>
SIGGRAPH2013 ¢,
Image courtesy http://www.irtualglobebook.com -

The relationship between z-window and z-eye also depends on the near and far distances
as shown in this graph.

The x-axis is the distance from the near plan in eye coordinates, from 0 to 100. The
y-axis shows z-window from 0 to 1. In all cases the view distance (f — n) is 100. Here we see
that as n gets smaller, and hence the far-to-near ratio gets bigger, the precision gets pushed
to the near plane.

A ratio of 1,000 is commonly considered acceptable for a 24-bit fixed-point depth buffer
[Akeley90]. In practice, we've gotten away with higher values depending on how far apart
geometry is. However, 1,000 or even 10,000 is not going to cut it for our massive worlds
where Earth’s semiminor axis alone is over 6,300,000 meters.

In the video |videos/zfightingcauses.wmv]|, we keep pushing the near plane out to elimi-
nate z- fighting between the plane and the globe. As we zoom in, we do not see z-fighting
because precision gets better; however, if we zoom out, z-fighting will occur again.

Code: https://github.com/virtualglobebook/OpenGlobe
(see Chapter06DepthBufferPrecision)

25


https://github.com/virtualglobebook/OpenGlobe

Z-Fighting Causes

* Minimum Triangle Separation

800

Stmin

n=01
n=1
10,000

Zeye

>
SIGGRAPH2013 ¢,
Image courtesy http://www.irtualglobebook.com -

The minimum triangle separation, s-min, for a distance from the eye, z-eye, is the mini-
mum world-space separation between two triangles required for correct depth occlusion.
[Baker99| provides an approximation to s-min for an x-bit fixed-point depth buffer:

S-min = (z-eye * z-eye) / ((2”°x)n --- z-eye)

[Akeley06] also show that window coordinate precision, field of view, and error accu-
mulated by single-precision projection, viewport, and rasterization arithmetic contribute to
effective depth buffer resolution.

26



Z-Fighting Solutions

Far-to-near tuning

Remove distant objects / imposters

Multiple frustums

Complementary depth buffering

Logarithmic depth buffer
W-Buffer

SIGGRAPH20134(_,

Multiple Frustums

* Afew frustums can cover a large view distance
— Frustum 1: 1to 1,000
— Frustum 2: 1,000 to 1,000,000
— Frustum 3: 1,000,000 to 1,000,000,000

g
SIGGRAPH2013(/

In practice, we'll overlap the frustums a bit.

With a far-to-near ratio of 1,000, only a few frustums are needed to cover a large view
distance. Three frustums can cover from 1 meter to a 1 billion meters.

Each frustum has the same field-of-view and aspect ratio, but a different near and far
plane.

27



Multiple Frustums

* Simple implementation

foreach frustum in back-to-front order

{
clear depth;
find objects that overlap frustum;
render objects;

}

SIGGRAPH20134(_,

In practice, we’'ll overlap the frustums a bit.

Given that most objects will only overlap a single frustum, this can be more efficient.
Let’s aim to:

e Use the fewest frustums possible based on the needs of the current view, not a fixed
near and far plane

e Minimize the number of objects overlapping more than one frustum (by pushing out
the near plane — and having a larger initial frustum)

e Minimize CPU overhead

Let’s improve on this implementation.

28



Multiple Frustum Rendering

1) The scene produces commands that
encapsulate draw calls

Command

Boundin
ey ] e

volume
Render state Framebuffer

SIGGRAPH 2018‘30

The scene produces commands for the renderer to execute. In other literature, a command
is also called a “draw call” or a “batch.” Commands may come from the terrain engine or
other entitles like 3D models, billboards, or polylines.

A command has everything needed to execute a draw call using the underlying graphics
APT — WebGL in my case. Our engine has both DrawCommands for issuing drawEle-
ments/drawArrays calls and ClearCommands for clearing the framebuffer. Here, we're just
concerned with DrawCommands, which have:

e Vertex array, offset, and count

e Shader program and its uniforms, including a model matrix

e Render state that defines the fixed-function state of the pipeline

e Framebuffer, which is the target of the draw call

Strictly speaking, the bounding volume is not used for issuing the draw call, but it is

needed for determining what frustums a command belongs to. Any bounding volume could
work, but we use spheres everywhere for now.

Code: https://github.com/AnalyticalGraphicsInc/cesium/blob/b16/Source/
Renderer/DrawCommand. js

29


https://github.com/AnalyticalGraphicsInc/cesium/blob/b16/Source/Renderer/DrawCommand.js
https://github.com/AnalyticalGraphicsInc/cesium/blob/b16/Source/Renderer/DrawCommand.js

Multiple Frustum Rendering

2) Walk through commands
* Frustum cull?

* Compute
— Max near distance
— Min far distance

-4 /'
SIGGRAPH20134(_4

1If it wasn’t already; the scene culls some commands hierarchically

The near and far plane distances can varying frame-to-frame. The farther we can push
out the near plane and the closer we can bring in the far the plane, the fewer frustums
we will have. So instead of just using the application-defined near and far distances, we
compute them dynamically using each command’s bounding volume and the application-
defined distances as extremes.

In our engine, we do both frustum culling and horizon culling, which is occlusion culling
with the ellipsoid, as Kevin will discuss in the following talk.

Code: createPotentially VisibleSet() in
https://github.com/AnalyticalGraphicsInc/cesium/blob/b16/Source/Scene/Scene.
js

30


https://github.com/AnalyticalGraphicsInc/cesium/blob/b16/Source/Scene/Scene.js
https://github.com/AnalyticalGraphicsInc/cesium/blob/b16/Source/Scene/Scene.js

Multiple Frustum Rendering

3) Given desired far-to-near ratio, determine the
number of frustums

var numFrustums = Math.ceil(
Math.log(far / near) / Math.log(farToNearRatio));

for (var m = 0; m < numFrustums; ++m) {

var n = Math.max(near, Math.pow(farToNearRatio, m) * near);
var £ = Math.min(far, farToNearRatio * curNear);
/..

=
SIGGRAPH2018~/ﬁ

Code: updateFrustums() in
https://github.com/AnalyticalGraphicsInc/cesium/blob/b16/Source/Scene/Scene.
js

31


https://github.com/AnalyticalGraphicsInc/cesium/blob/b16/Source/Scene/Scene.js
https://github.com/AnalyticalGraphicsInc/cesium/blob/b16/Source/Scene/Scene.js

Multiple Frustum Rendering

4) Walk through commands, and assign them to
frustum(s).

* Steps 2 and 4 can be donein a single pass over
the commands by exploiting temporal
coherence — using the frustums computed
from the previous frame

SIGGRAPH20134(_,

Now that we know the length of each frustum, we can walk through the commands again,
and assign to them frustums that they overlap. As we’ll see some commands will wind up
in more than one frustum.

So far, the renderer has made two passes over commands — the first pass culls and
computes the frustums, and the second pass assigns commands to frustums. A typically
application will have 100s to 1,000s of commands so it would be nice to be able to do this in
a single pass. We can by exploiting temporal coherence. It is very likely that the frustums
computed in the previous frame can be used in the current frame. We define our acceptance
criteria as:

e desired near >= previous near
e desired far <= previous far

e desired number of frustums == previous number of frustums

Code: createPotentially VisibleSet() and insertIntoBin() in
https://github.com/AnalyticalGraphicsInc/cesium/blob/bl6/Source/Scene/Scene.
js

32


https://github.com/AnalyticalGraphicsInc/cesium/blob/b16/Source/Scene/Scene.js
https://github.com/AnalyticalGraphicsInc/cesium/blob/b16/Source/Scene/Scene.js

SIGGRAPH2013 »34

Coherence can be really good, especially when the user-defined near distance is used
because the closest bounding volume intersects it because, for example, the viewer is deep
in the mountains or following a satellite as shown here.

Coherence is not so good in other cases, like, when zooming in to an object because the
desired near distance keeps getting smaller and smaller.

We could improve coherence by scaling the computed near/far to be slightly farther apart,
but this runs the risk of requiring new frustums.

33



Multiple Frustum Rendering

2-4) Walk through commands

* Frustum cull

* Assign commands to previous frame frustums
* Compute desired near/far distance

Compute new frustums and repeat if new
frustums are needed.

SIGGRAPH2013\/_4

So Steps 2-4 are really combined into a single pass over the commands. We cull a
command as before, then assign it to frustum(s) using the previous frame’s frustum. As we
walk through each command, we still compute the desired near/far distances. Then we use
these to determine if the previous frame’s frustums will work. If they won’t we compute new
frustums, and call the function again knowing that the computed frustum will work.

34



Multiple Frustum Rendering

* Render like we did before

foreach frustum in back-to-front order
{

clear depth;

render commands overlapping this frustum;
}

SIGGRAPH 2013»:‘

Multiple Frustum Artifacts

* Artifacts without frustum overlap

SIGGRAPH 2013‘7"‘

35



Multiple Frustum Artifacts

* Artifacts without frustum overlap

SIGGRAPH 2013»34

If adjacent frustums do not overlap slightly, we’ll see tearing artifacts where the near
plane of one frustum meets the far plane of the closer frustum. In the lower image here, we
see several tears revealing the background color where two frustums meet.

When we first saw this artifact, we thought it was a driver bug, but we saw it across
hardware vendors. With the near plane of a frustum equal to the far plane of the closer
frustum, T can imagine one pixel artifacts, but these artifacts are much larger.

To solve these, we move the near plane of each frustum, except the closest, slightly closer.

Code: updateFrustums() in
https://github.com/AnalyticalGraphicsInc/cesium/blob/b16/Source/Scene/Scene.
js

Video: videos/frustumOverlap.wmv

36


https://github.com/AnalyticalGraphicsInc/cesium/blob/b16/Source/Scene/Scene.js
https://github.com/AnalyticalGraphicsInc/cesium/blob/b16/Source/Scene/Scene.js

Multiple Frustum Artifacts

* Artifacts with frustum overlap

SIGGRAPH2013 »3‘
Image courtesy http://www.irtualglobebook.com

Overlapping frustums creates a new artifact for objects rendered with blending. In our
engine, we render a lot of large translucent objects to represent sensors, e.g., a view volume
of a camera attached to a satellite. Since these objects are large, they often overlap more
than one frustum. Since they use alpha blending for translucency, the blending occurs twice
where the frustums overlap leading to artifacts that can appear to slide back and forth when
the viewer zooms.

It should be possible to eliminate these artifacts with the stencil buffer, but we haven’t
investigated it yet.

37



Multiple Frustum Performance

* Redundantdraw calls

SIGGRAPH2013\/_4

When a bounding volume overlaps more than one frustum, not only does it have the
potential to create artifacts, but it leads to commands being executed redundantly, that is,
executing draw calls for the same object in more than one frustum. How, it’s actually not
as bad as you’d think. Let’s look at a few different scenes.

For this full world view, we execute 20 commands (ignoring clears, the sky box, and 2D
overlays). They all fit within one frustum because we are able to dynamically push the near
plane back really far, which allows the first frustum to be large enough to include the entire
globe.

38



Multiple Frustum Performance

* Redundantdraw calls

e G+ G e

SIGGRAPH 2013»:‘

Here we are zoomed in much closer to the ground look at Mount Everest. For this scene,
we execute 106 commands (horizon views are always a challenge; note there is no fog here
allowing us to not draw distant tiles). The good news is 104 commands are executed once,
and only two commands are executed twice.

39



Multiple Frustum Performance

* Redundantdraw calls

=

SIGGRAPH2013{(

—

We’re not always this lucky with redundant calls. For example, we are high in space in
this scene. We need three frustums total.

This scene only needs six commands, but two of them execute in all three frustums. Can
you guess which? The billboards for the satellites are batched together as are the labels for
the satellites. Since the bounding sphere for these includes the Molniya orbit high in space
and right in front of the viewer — which peaks at 40,000 km above the globe, and the Geoeye
in low earth orbit. This creates a huge bounding volume that overlaps all three frustums.

40



Multiple Frustum Performance

* Redundantdraw calls

SIGGRAPH2013\/_4

Here’s another screenshot showing the orbit line for us to better appreciate the scale.

These shows that there is tension between batching and culling even more so when
using multiple frustums. Traditionally, to make the best use of the GPU, and minimize
CPU overhead, we always try to reduce the number of draw calls we make during a frame
by batching. When we introduce multiple frustum rendering, batching generally increases
bounding volume sizes, making it more likely that a command (batch) will need to be
executed in more than one frustum, which increases the number of draw calls. Given that
applications built on our engine are almost always CPU bound, we still see a win by batching
aggressive even if it leads to some redundant draw calls.

41



Acknowledgements

* Dan Bagnell
* Ed Mackey, @emackey
* Deron Ohlarik

-4 /'
SIGGRAPH20134(_4

Ed did our original multi-frustum implementation in the late 90s. Dan did most of the
recent implementation work in Cesium, our WebGL engine.

42



References

[Akeley90] Kurt Akeley. The Hidden Charms of the z-
Buffer. IRIS Universe, 1990.

[Akeley06] Kurt Akeley and Jonathan Su. Minimum
Triangle Separation for Correct z-Buffer Occlusion.
Graphics Hardware, 2006

[Baker99] Steve Baker. Learning to Love Your z-Buffer.
1999

[Cozzill] Patrick Cozzi and Kevin Ring. 3D Engine Design
for Virtual Globes. A K Peters, Ltd., 2011

>
SIGGRAPH20134(_4 )

In addition to these more formal references, also see the implementation notes with
pseudo- code for our engine - https://github.com/AnalyticalGraphicsInc/cesium/
wiki/Data-Driven-Renderer-Details.

43


https://github.com/AnalyticalGraphicsInc/cesium/wiki/Data-Driven-Renderer-Details
https://github.com/AnalyticalGraphicsInc/cesium/wiki/Data-Driven-Renderer-Details

Chapter 3

World-Scale Terrain Rendering

The most up-to-date version of these notes can be found at http://cesium.agi.com/
publications.html.

3.1 Introduction - Massive worlds render massive quan-
tities of terrain

Terrain datasets for massive worlds — especially those that aim to represent the massive
world we call Earth — can easily measure in the terabytes. Add in detailed textures for the
surface, such as color maps derived from satellite imagery or aerial photography, and it is not
at all uncommon to see datasets measured in the hundreds of terabytes. Such datasets are
much too large to fit in memory, and even too large to fit on a local system. Working with
such enormous datasets requires that we process and organize the source data for efficient
streaming from a remote server, to disk or memory on a local client, and finally into GPU
memory for rendering. We discuss how we solved these problems in Cesium, an open source
virtual globe that runs inside a web browser without the need for a plugin.

Cesium renders an accurate model of the Earth, from a global view where the entire planet
is visible down to the street level where individual houses, cars, and trees are visible. The
terrain surface is streamed as a mesh or heightmap from remote servers, and overlaid with
multiple layers of imagery from different sources, such as Web Map Service (WMS) servers,
ArcGIS MapServers, Bing Maps, and more. The imagery need not share the same extent,
tiling scheme, or even map projection as the terrain, nor do all the imagery sources need to
share these attributes with each other. Cesium combines the disparate imagery on-the-fly,
applies adjustments to each layer independently such as hue, saturation, and gamma, and
renders the completed scene inside a web page at well over 60 FPS even on modest hardware.

44


http://cesium.agi.com/publications.html
http://cesium.agi.com/publications.html

3.2 Organizing and processing terrain data

Real terrain data for Earth and other planets is collected using satellite and aerial instru-
ments. For example, the Shuttle Radar Topography Mission (SRTM) obtained elevation
data for most of the Earth’s surface with an instrument flying onboard the Space Shuttle
Endeavor. Such datasets are usually provided as giant heightmaps, or perhaps as a large
collection of smaller heightmaps, where height samples are arranged in a regular grid in some
projection.

It is not feasible to render such data directly. Instead, we preprocess it into a form
that is amenable to streaming in small, multi-resolution chunks. For this sort of real-world
terrain data, which conforms to an ellipsoidal model of the Earth and does not have any
overhanging sections anyway due to the way it is collected, a quadtree is a very natural
spatial data structure for managing culling and level-of-detail. Each node in the quadtree,
known as a tile, represents a subset of the terrain at a particular resolution. The entire
quadtree is known as a tile pyramid, because it has a small number of tiles at the root,
usually between one and four, and millions or perhaps even billions of tiles at the leaves.

For a world extruded from a plane, it is straightforward to use a quadtree to uniformly
divide the world. For a spherical or ellipsoidal world like Earth, however, the quadtree only
uniformly divides a 2D projection of the world. The choice of map projection is important,
because no projection can represent an ellipsoidal world without some distortion.

We use a simple geographic projection, also known as equidistant cylindrical or plate
carrée, for our tile quadtree. This leads to singularities at the poles, where all samples in
a row of the heightmap map to a single point on the globe. This is generally acceptable
for Earth, however, and is easy to work with in fragment shaders during rendering. More

45



sophisticated approaches are possible without changing the fundamental rendering algorithm,
such as the Ellipsoidal Cube Maps described by Lambers and Kolb'.

d e TV | b
BASEC GGl
J % s e

A single terrain dataset at rendering time is built from multiple input datasets. For
example, one terrain dataset might be a mosaic of GTOPQO30 data covering the entire world,
SRTM data between -60 and 60 degrees latitude, and the National Elevation Dataset (NED)
for the United States. At rendering time, we work with a single preprocessed tile pyramid
and the many sources of the original data do not influence the rendering algorithm. This
is in contrast to our handling of imagery, where multiple imagery sources are mosaiced at
rendering time using multitexturing.

The process for incorporating a new source dataset into the tile pyramid is as follows:

1. Compute the deepest level in the tile pyramid to be populated by the source data.
This is a function of the source data resolution and the desired maximum number of
samples in a single tile at the deepest level.

2. If the source data does not cover the entire world, compute the portion of the tile
pyramid overlapped by the source data.

3. Execute a depth-first, post-order traversal of the overlapped portion of the tile pyramid,
down to the deepest level to be populated, so that leaf tiles are processed first and
parent tiles are only processed after their children are processed.

(a) For each leaf (deepest-level) tile:

i. Determine the set of height samples in the source that overlap the tile.

'http://ecm-planet.sourceforge.net/lambersl2ecm.pdf

46


http://ecm-planet.sourceforge.net/lambers12ecm.pdf

ii. Transform each sample to ellipsoid-centric Cartesian coordinates, usually
WGS84 for Earth. Typically, the projected (X, Y, Height) coordinates are
transformed to geodetic (Longitude, Latitude, Height) before they are trans-
formed again to ellipsoid-centric (X, Y, Z) coordinates.

iii. Add the sample Cartesian position to the tile mesh as a vertex.

iv. Add additional vertices at the edges of the tile by interpolating, because the
edges and corners are unlikely to align with samples in the source dataset.

v. Add a skirt around the perimeter of the tile. During rendering, the skirt will
hide cracks between adjacent tiles with different levels of detail.

vi. Connect vertices to form faces, using a regular triangulation of the source
grid.
vii. Store the finished tile on disk.
(b) For each non-leaf (parent) tile:
i. Build a new mesh that is the sum of all of this tile’s child tile meshes, minus
the skirt.
ii. Simplify the mesh by contracting vertex pairs until the desired geometric
error limit is reached. The geometric error limit is discussed below.
iii. Add a skirt around the perimeter of the tile.
iv. Store the finished tile on disk.

This entire process is highly amenable to parallelization, by both utilizing multiple
threads on a single machine and by utilizing multiple machines in a cluster. While pre-
processing the terrain, we also compute and store per-tile metadata to aid in rendering, such
as minimum and maximum heights, bounding volume, and a horizon occlusion point.

47



The horizon occlusion point is a proxy for the tile that we can use in occlusion culling
against the Earth ellipsoid. If the horizon occlusion point is below the horizon, we can be
certain that the entire tile is below the horizon as well. The computation and use of the
horizon occlusion point is discussed in more detail in the Horizon Culling section.

We choose the target geometric error of the root level — level zero — by answering a
question: if a root tile contained a regular grid of vertices with a chosen number of rows and
columns, what is the worst-case geometric error of this representation relative to the real
world? We can make a worst-case estimation of this error without getting into the details
of the actual topology of the world. Imagine that Mount Everest rose straight out of the
Mariana Trench. And now imagine that our grid of vertices happened to have two adjacent
samples in the Mariana Trench, such that our aqueous Mount Everest is not represented
at all. Certainly that’s a worst case scenario in terms of the geometric error of our terrain
representation. The height error would be the difference in height between Mount Everest
and the Mariana Trench, or about 20 kilometers. The geometric error is, in fact, much
higher, however, because we need to take into account the curvature of the Earth. For a grid
width of 65 vertices at the equator, the maximum error is approximately 150 kilometers, and
this is the error we target while simplifying tiles in level zero.

For levels greater than zero, the geometric error limit is determined by a simple relation-
ship. Each deeper level in the tile pyramid has half the geometric error of the level above it.
At level 18, the geometric error drops below one meter. For tiles at all levels, vertex pairs
are collapsed until collapsing the next pair would cause the estimated error of the tile to
cross the maximum allowed for tiles at this level in the tile pyramid.

Because the tile pyramid is built from multiple input datasets, and those datasets them-
selves may have regions of no data (voids), the maximum depth of the tile pyramid varies
across the globe. We use a separate table of contents file, generated during the preprocessing
step, to inform the rendering engine of which tiles are present.

3.3 Tile selection for rendering

Our preprocessing work does not reduce the absolute size of the terrain dataset; in fact, it
increases it. All that work up front, however, puts us in a good position to be able to very
efficiently select a subset of the terrain to render in any given frame.

Our rendering algorithm closely follows the “Chunked LOD” approach presented by
Thatcher Ulrich at a SIGGRAPH course in 20022

Tile selection proceeds recursively from the root of the tile pyramid. The entire tile
pyramid is not expected to be resident on the client, but portions of it will instead be
streamed as needed from a remote server. We discuss that process in detail in the Life of a

Zhttp://tulrich.com/geekstuff/chunklod.html

48


http://tulrich.com/geekstuff/chunklod.html

Tile section.

For each visited tile, the first step is to perform simple view-frustum culling. If the tile
lies entirely outside of the current view frustum, we don’t need to render it or visit any of
its children. Because our terrain is mapped to a globe, we also perform another type of
visibility culling: horizon culling. The concept is simple: if we can detect that the tile is
entirely below the horizon of the ellipsoid, as viewed from the current camera position, we
don’t need to render it. See the Horizon Culling section for more details.

Once we have determined that a tile is visible, we really have two options: we can render
this tile and stop our traversal of its branch of the quadtree, or we can refine. Refining means
continuing traversal with this tile’s child tiles, and rendering them, or their descendents,
instead. Effectively, if we choose to refine, we are increasing the rendered level-of-detail for
the region of the globe covered by this tile.

The standard technique used in hierarchical LOD algorithms, and the one used here, is
to drive refinement by an estimate of the error, in pixels on the screen, that would result
from rendering this tile rather than refining. We choose the tolerable screen-space error
for our application, usually a small number like one or two pixels, and we refine whenever
the estimated screen-space error for the tile is greater than the tolerance. By varying this
tolerance, we are able to trade rendering accuracy for performance.

Screen-space error (SSE) is estimated by projecting the estimated geometric error of the

tile into screen space, using this standard LOD equation:

EX

SSE = —
2dtan§

49



Where ¢ is the geometric error of the tile in meters, x is the viewport width in pixels, 0
is the camera’s field-of-view angle in radians, and d is the distance to the tile.

The field-of-view angle of the camera and the width of the viewport are known. We also
know the geometric error because it is a simple function of the tile’s level in the tile pyramid.
Because we only know the maximum geometric error, not the local error throughout the tile,
we conservatively assume that the point on the tile closest to the viewer has the maximum
error. Even the distance to the closest point on the tile is expensive to compute, however.
Instead, in our LOD equation, we use the distance to the closest point on a bounding volume
that bounds the tile.

While bounding spheres are useful for culling, we’ve found them to be very poor for
estimating distance for LOD selection. The problem is that the viewer is very frequently
inside the bounding sphere of candidate tiles as a result of the sphere extending far above and
out from the edges of the tile. When the viewer is inside the bounding sphere, a conservative
estimate of distance to the region of the tile with maximum geometric error is literally zero;
the viewer could be right on top of it. In that case, we must refine, because the projected
error is infinite.

In Cesium, we use four planes to bound each tile, one at each horizontal boundary of the
tile, plus a curved surface at the maximum height of the terrain in the tile. The two planes on
the Western and Eastern edges of the tile tightly bound the tile, but planes on the Northern
and Southern boundaries are approximations due to the surface normals at those boundaries
not lying in a plane. The distance from the fifth, curved, surface is easily computed by
ransforming the viewer position to a height above the ellipsoid and then subtracting the
tile’s maximum height.

We can not render a tile that is not yet loaded, nor can we render a tile where any of
its four siblings in the quadtree are not loaded. If the parent cannot be rendered, either, we
will continue up the quadtree until we find a suitable tile to render. As more data is loaded,
the visual quality of the globe will improve, but at no point do we suspend rendering to wait
for data to load.

Having selected the tiles to render this frame, it’s now time to actually render them. In
general, we issue one draw command per tile. Multiple color textures, a specular mask, and
other effects are applied in a single pass. In some cases, a single draw command is executed
multiple times per render frame, though, in order to enable correct depth testing of scene
elements against terrain via multi-frustum rendering.

The shaders used in rendering will be discussed in the next section. First, let’s discuss
the tile load pipeline.

20



3.4 Life of a tile

Our terrain and imagery datasets are huge — much too big to fit in memory or even on a
local disk - so a primary challenge of rendering them is loading and unloading subsets of data
at appropriate times. As a web-based application, Cesium downloads terrain and imagery
on demand over HT'TP. It uses a tile load pipeline to manage the process of fully populating
a selected tile with data, keeping much of the process asynchronous with rendering so that
the frame rate remains relatively consistent even as tiles are downloaded and processed.

A tile starts its life as a skeleton. Tile skeletons know their location in the world, and
their relationship to other tiles, but do not yet have the geometry and texture data necessary
to render. During tile selection, we can’t refine to a skeleton. Instead, we add the skeleton
tile to the load queue and render the parent tile for this frame.

The load queue is a priority queue, implemented as a doubly-linked list. Tiles needed in
the most recent frame are kept at the front of the queue, because those tiles are likely to be
needed in the next frame as well. The tiles in the load queue that were requested in a single
frame are further prioritized based on their level in the tile tree such that larger, lower-detail
tiles are loaded before smaller, higher-detail ones, to maximize the average detail across the
scene.

Once per frame, Cesium processes the tiles in the load queue, moving them through the
following steps:

3.4.1 Create imagery skeletons

Cesium enables imagery from multiple sources to be overlaid on terrain and layered or alpha
blended together. For example, a base map with worldwide imagery can be overlaid with
a very high-resolution image for a small area, or a base layer can alpha blended with a
rasterized road layer.

In support of this capability, the first task in the load pipeline is to attach TileImagery
skeletons to the Tile for each active imagery layer. Like a Tile skeleton, a TileImagery
skeleton does not yet have any renderable resources. However, it knows which imagery tile
will be needed, the minimum and maximum texture coordinates over which the imagery tile
applies, and how to scale and translate the imagery tile in order to map it onto the terrain
surface.

Given a terrain tile and an imagery layer, Cesium first determines which quadtree level
from the imagery layer applies to the terrain tile. As a first cut, we simply need to find
the imagery level that has a texel spacing, in world coordinates, that is equal to or smaller
than the geometric error of the terrain tile’s level. For a good looking scene, however, we
have found that it is important that the spacing between imagery texels once projected to
the screen be smaller than the terrain screen-space error (SSE). In other words, while a

o1



maximum SSE for terrain geometry of two pixels looks quite good, the scene will look blurry
if each imagery texel is allowed to be mapped to two pixels. Cesium selects an imagery level
with texel spacing less than or equal to half the geometric error of the terrain tile.

With the level selected, the next step is to identify which imagery tiles in the level overlap
the terrain tile. For an imagery layer with a non-worldwide extent, there may not be any
tiles that overlap a portion of the terrain tile, so we compute the rectangular extent that is
the intersection between the terrain tile’s extent and the imagery layer’s extent. Then, we
use the imagery layer’s tiling scheme to find the tile coordinates of the intersection extent’s
northwest and southeast corners. As shown in the figure below, the result is a rectangular
range of tile coordinates, and we create a TileImagery object for each tile in the range.

To find the imagery tiles that overlap a terrain tile (yellow), we determine the imagery
tiles that contain the northwest and southeast corners (red dots). The containing tiles form
the extremes of a rectangular range, and all imagery tiles in the range are rendered on the
terrain tile.

Later, in the fragment shader for this terrain tile, we’ll determine if the imagery tile
applies to the current fragment by checking if its texture coordinates are within the texture
coordinate extent for this imagery tile. If so, we’ll transform the fragment’s texture coordi-
nates to imagery tile texture coordinates by multiplying by the TileImagery’s scale property
and then adding its translation property. These three properties, the texture coordinate ex-
tent, scale, and translation, are set during this step in the load pipeline using a computation
on the extents of the terrain and imagery tile, shown in the listing below.

var terrainWidth = terrainExtent.east - terrainExtent.west;
var terrainHeight = terrainExtent.north - terrainExtent.south;

var scaleX = terrainWidth / (imageryExtent.east - imageryExtent.west);
var scaleY = terrainHeight / (imageryExtent.north - imageryExtent.south);
var translationX = scaleX x (terrainExtent.west - imageryExtent.west) / terrainWidth;
var translationY = scaleY * (terrainExtent.south - imageryExtent.south) / terrainHeight;
var minU = Math.min(1.0, (imageryExtent.west - tile.extent.west) /

(tile.extent.east - tile.extent.west));
// maxU, minV, and maxV are similar to minU and not shown

22



Care must be taken to ensure that minU is 0.0 for an imagery tile that starts on the
western edge of the terrain tile, and similar for the other edges, even in the face of small
rounding errors. Otherwise, cracks will be visible between tiles even when skirts are used. In
addition, for adjacent textures, maxU of one must equal minU of the next in order to avoid
cracks in the middle of the tile.

3.4.2 Request

The next task is to request the tile terrain and imagery from the remote sources. Because
Cesium runs in a web browser, we use browser-based APIs to download images and other
resources asynchronously. In a native application, we would use one or more threads to
retrieve resources.

We take care to avoid creating too many simultaneous requests. This is especially im-
portant in Cesium, which has a browser-imposed limit of six simultaneous requests per
hostname. Because the tiles needed to render change as the camera moves, we may decide
to start loading a particular tile, then before the request completes, find that it’s no longer
needed. Throttling requests allows us to re-order pending requests every frame in order
to always keep the most important requests at the front, keeping the latency as small as
possible.

Cesium benefits from its host web browser’s automatic caching of downloaded resources.
In a native application, we would manually keep a cache of downloaded terrain and imagery
tiles on disk. Such tiles cannot, of course, be prepared for rendering as quickly as those that
are already in memory, but they can be readied much more quickly than those that must be
requested from a remote server.

When the requests complete, the tile transitions to the received state and is ready for
the next step of the load process.

3.4.3 Transform

The transform step takes the raw data received from the remote server and transforms it into
a form more amenable to rendering. For example, we turn terrain expressed as a heightmap
into a triangle mesh, and add skirts around its perimeter to hide the cracks between tiles
that can result when two tiles of different LODs are adjacent to each other.

Transforming a single tile is fast, but when the user moves the camera to a new part of the
globe, the time to transform all the new tiles can significantly impact rendering performance.
It’s much better to continue to render low-detail tiles at interactive frame rates than to stall
rendering while transforming a large set of new tiles.

In Cesium, we use a task processing system that uses Web Workers to interpret height
maps and compute vertices asynchronously, transferring the resulting array back to the main

33



thread. Once the main thread receives the results, it transitions the tile to the transformed
state and the tile is ready for the next step of the load process.

3.4.4 Create resources

Finally, WebGL resources, such as vertex buffers and textures, are created from the trans-
formed data. For example, after the transform step, we have a TypedArray containing the
interleaved vertex attributes for the tile, but that vertex data is not yet in a WebGL vertex
buffer and it is not yet available to the GPU. During this step, we upload the vertex data
to the GPU as a vertex buffer.

We take care to share WebGL resources whenever possible. A tile of imagery that overlaps
multiple terrain tiles will only be loaded and uploaded to the GPU once. For heightmap-
based terrain, all meshes across all levels of detail can share a single index buffer. This
sharing is managed using reference counting, and yields a significant reduction in memory
usage.

Ideally, resource creation would be managed by a thread separate from the rendering
thread, and in a native application it probably would be. Doing so reduces memory copies
and can enable driver optimizations. On the web, however, it is currently not possible to
create WebGL resources in a Web Worker. We look forward to a future extension that allows
this.

With its WebGL resources created, the tile is ready to be rendered, and will be added to
the render list the next time the tile selection process selects the tile for rendering.

3.4.5 Replacement

As the user moves around the globe, a large number of tiles will be loaded. Once the viewer
moves elsewhere, old tiles are no longer needed. To keep the memory used by tiles from
growing unbounded, Cesium places all partially or fully loaded tiles in a replacement queue.
Each time a tile is traversed or rendered it is moved to the head of the queue, so the tiles at
the tail of the queue are the ones that have been used least recently. To save memory, tiles
are unloaded from the tail of the queue.

When we unload a tile, we put its WebGL resources, such as textures, back into a pool
rather than destroying them outright. Later, when loading a new imagery tile, we can reuse
an existing texture from the pool. This approach minimizes the number of calls to allocate
WebGL resources.

o4



3.5 Terrain and imagery shaders

Our vertex shader is straightforward. We multiply an RTC model-view-projection matrix
by the input vertex position, expressed relative to a center-point somewhere in the tile. By
using RTC rendering, we avoid jittering artifacts when zoomed in close to a tile.

The fragment shader is a bit more complicated, mostly due to the need to blend together
imagery from multiple layers. We start by assuming the fragment is a constant color, perhaps
a nice shade of Earthy blue. Then, in layer order, from bottom to top, each texture has the
opportunity to modify that color. The color resulting from one texture is passed as the input
to the next. The color output by the last texture is the input to the lighting equations. A
single layer may have multiple textures. In that case, their relative order is arbitrary because
multiple textures from the same layer do not overlap.

Because we allow different imagery layers to use different tiling schemes — from the
terrain and from each other - it is possible and common that a given imagery texture will
not completely overlap a tile. For each texture, we pass as packed uniforms the scaleX,
scaleY, translationX, translationY, minU, minV, maxU, and maxV values computed during
the “Create imagery skeletons” phase of the tile load pipeline. Collectively, these values
control which portion of the current texture applies to which portion of the tile.

Tile texture coordinates are (0.0,0.0) in the southwest corner of the tile and (1.0, 1.0) in
the northeast corner. They are linear with longitude and latitude, which is consistent with
a geographic projection. The minU, minV, maxU, and maxV values specify the rectangular
portion of the tile that is overlapped by the imagery texture. If the current fragment’s texture
coordinates lie outside this range, this texture does not modify the color of the fragment.

if (tileTextureCoordinates.s < minU ||
tileTextureCoordinates.s > maxU ||
tileTextureCoordinates.t < minV ||
tileTextureCoordinates.t > maxV)

{

return previousColor;

Next, we compute the texture coordinates with which to sample this texture by applying
the scale and translation computed during loading of the tile:

vec2 textureCoordinates = tileTextureCoordinates * scale +
translation;

After sampling the texture using these coordinates, we apply any adjustments to the
sampled color, such as brightness, contrast, hue, saturation, gamma, or alpha. Finally, we
alpha blend the sampled color with the previous color and return the new color:

return mix(previousColor, color.rgb, color.a);

Once the final color has been determined by applying all of the layers, we do one more
texture lookup to determine if the fragment is on land or in water. If it’s in water, we add
a specular highlight and an animated wave effect, following the general approach used by

35



Jonas Wagner®.

3.6 Horizon culling

Horizon culling is a form of occlusion culling that is critical for any spherical or ellipsoidal
massive world. It is critical because it allows us to determine that significant chunks of
terrain are not visible to the viewer, and therefore to avoid rendering them. In the figure
below, terrain tiles covering the entire Earth lie inside the view frustum. Over half of them,
however, are below the horizon and do not need to be rendered.

The green points are visible to the viewer. The red points are not visible because they
are outside the view frustum, which is represented as heavy white lines. The blue point is
inside the view frustum, but it is not visible to viewer because it is occluded by the Earth.
Horizon culling aims to separate the green points from the blue ones.

Cesium performs horizon culling of each terrain tile using a novel technique that requires
only a handful of floating-point operations to test against an ellipsoidal model of the hori-
zon. We achieve this by working in an ellipsoid-scaled space in which the ellipsoid is, very
conveniently, represented as a unit sphere. To transform from a standard reference frame
with its origin at the center of the ellipsoid and its axes aligned with the ellipsoid’s axes to
the ellipsoid-scaled space, we simply multiply each coordinate value by the inverse of the
ellipsoid’s radius along that axis.

The basis for our horizon culling is a horizon occlusion point associated with each tile.

3http://29a.ch/2012/7/19/webgl-terrain-rendering-water- fog

26


http://29a.ch/2012/7/19/webgl-terrain-rendering-water-fog

The horizon occlusion point has the useful property that when the point is below the horizon,
the entire tile is below the horizon as well. Thus, we can conservatively horizon cull the tile
by simply testing the point against the horizon.

We compute the horizon occlusion point during the preprocessing step. First, we arbi-
trarily assume that the horizon occlusion point lies along a vector from the center of the
ellipsoid to the center of the tile’s bounding sphere. Then, for each vertex in the tile, we
determine where on that center line the point is located.

o7



In the figure above, the Earth ellipsoid is shown in blue and a terrain tile is shown in
brown. For a given vertex V, the horizon occlusion point P we’re looking for is the intersection
of with the center line, . Point H is a point on the horizon from the perspective of point V.
There are an infinite number of horizon points from the perspective of point V, forming a
circle on a sphere, but only two of these horizon points form a vector through point V that
intersects with the center line. One of these intersections will occur after point V and the
other before, but we’re only concerned with the intersection that occurs afterward, because
that one will occur farther from the center of the ellipsoid.

A full derivation of the horizon occlusion point computation can be found on our blog®.
It all boils down to computing the magnitude of point P along as follows:

var position = ...;

var scaledSpacePosition = ellipsoid.transformPositionToScaledSpace(position);
var magnitudeSquared = scaledSpacePosition.magnitudeSquared();

var magnitude = Math.sqrt(magnitudeSquared);

var direction = scaledSpacePosition.divideByScalar(magnitude);

var cosAlpha
var sinAlpha
var cosBeta
var sinBeta

irection.dot(scaledSpaceDirectionToPoint);
irection.cross(scaledSpaceDirectionToPoint).magnitude();
1.0 / magnitude;

Math.sqrt(magnitudeSquared - 1.0) * cosBeta;

oo

var magnitude = 1.0 / (cosAlpha * cosBeta - sinAlpha * sinBeta);

We repeat this computation for each vertex in the tile. The final magnitude is the greatest
of the magnitudes computed for any vertex.

Later, during tile selection, we perform the following computation each time the camera
moves:

var cv = ellipsoid.transformPositionToScaledSpace(cameraPosition, this._cameraPositionInScaledSpace);
var vhMagnitudeSquared = Cartesian3.magnitudeSquared(cv) - 1.0;

Cartesian3.clone(cameraPosition, this._cameraPosition);
this._cameraPositionInScaledSpace = cv;
this._distanceToLimbInScaledSpaceSquared = vhMagnitudeSquared;

And then the following for each tile:

var cv = this._cameraPositionInScaledSpace;

var
var
var
var

vhMagnitudeSquared = this._distanceToLimbInScaledSpaceSquared;
vt = Cartesian3.subtract(occludeeScaledSpacePosition, cv, scratchCartesian);
vtDotVc = -vt.dot(cv);
isOccluded = vtDotVc > vhMagnitudeSquared &&
vtDotVc * vtDotVc / vt.magnitudeSquared() > vhMagnitudeSquared;

If isOccluded is true, we do not render the tile.

‘http://cesium.agi.com/blog.html

28


http://cesium.agi.com/blog.html

3.7 Map reprojection on the GPU

Cesium currently displays imagery referenced to either a WGS84 Geographic (EPSG:4326)
projection or a Web Mercator (EPSG:3857) projection, the two most common map projec-
tions seen on the web.

As mentioned previously, terrain vertices include texture coordinates that assume a Ge-
ographic projection. In other words, the texture coordinates, regardless of the original map
projection of the terrain data, are a function of the latitude and longitude of the vertex
as a fraction of the total latitude and longitude spanned by the terrain tile. The GPU’s
interpolation of the vertex texture coordinates across fragments gives us reasonable, if not
100% accurate, Geographic texture coordinates for the fragments.

If the source imagery tile is in a Web Mercator projection, however, using these Geo-
graphic texture coordinates will badly distort the image for tiles that cover a large spatial
area because the texels in such an image have a non-linear mapping to latitude. Instead, we
reproject Web Mercator imagery tiles to Geographic on the GPU by rendering them to a
framebuffer with a color attachment and doing the reprojection in the fragment shader. We
found this to be much lighter on memory than including multiple sets of texture coordinates
for the different projections, and more performant than reprojecting the imagery on the
CPU.

Transforming Geographic texture coordinates to Web Mercator in order to sample a
source Web Mercator texture is straightforward. Given the latitude in radians, the Web
Mercator Y-coordinate of the southern edge of the tile, and the latitude of the current
fragment, the Web Mercator vertical texture coordinate is:

mercatorV = 0.5 * log((1.0 + sin(latitude)) / (1.0 - sin(latitude)) - southMercatorY;

The difficulty, as is often the case when rendering a world as big as the Earth, is in
dealing with the GPU’s limited floating-point precision. In particular, the subtraction of
southMercatorY is problematic because both the subtrahend and the minuend are of similar
magnitude, so a great deal of precision is lost in the process.

We deal with this problem in two ways. First, we perform the subtraction using simulated
double-precision using the DSFUN90 algorithm. Second, for spatially small tiles, we abandon
the reprojection and simply use the Web Mercator image as if it were already Geographic.
This is acceptable because, over small distances, the transformation amounts to much less
than a texel of difference in the texture coordinates. This is shown in the figure below.

While this approach works extremely well on desktop and laptop systems, Cesium is also
intended to run on mobile devices using the increasingly high-quality WebGL implementa-
tions available in Mozilla Firefox and Google Chrome for Android. Most of these devices
have reduced precision available to their fragment shaders, so cutting off the reprojection at
level 11 is not soon enough. The result is smeared-looking textures at medium zoom levels.

Our solution is to move the texture coordinate computation to the vertex shader instead

29



Level of Detail
o 2 4 B 8 10 12 14 16 18 20

0.01 \\
1 texel

0.001 \

Y o texel \‘
0.0001 \\-

0.00001 \

0.000001

Max. Error (texture!)

Figure 3.1: If we skip reprojection and assume a Mercator image is the same as a Geographic
image, we effectively introduce error in the texture coordinates. This figure shows the max-
imum magnitude of that error at any latitude for the first 20 levels of the tile quadtree.
Beginning at level 8, the error is smaller than a texel of a 256x256 texture. At level 11, the
error is smaller than 1/10 of a texel, which we consider acceptable.

of doing it in the fragment shader. This requires many more vertices — approximately one
per fragment rather than four total — in order to avoid errors introduced by interpolation
of the texture coordinates during rasterization. Fortunately, the vertex buffer is shared and
unmodified for all reprojections. In addition, our fragment shader becomes trivial with this
modified approach, so overall the performance is very similar to the original approach on
desktop systems and has the nice benefit of producing correct results on mobile devices.

3.8 Acknowledgements

Thanks to Scott Hunter for much of the content of the “Life of a Tile” section. Thanks to
Frank Stoner for deriving the scaled-space formulation of the horizon culling technique, and
for patiently explaining it to me.

60



Chapter 4

Populating a Massive Game World

4.1 Introduction

In March 2010 Just Cause 2 was released. The game was generally very well received, praised
for its vast open landscapes, the player freedom, and the seemingly never-ending amount of
things to blow up. To this day Just Cause 2 still stands out among large games.

But filling a game world of over 1,000 km? with meaningful content was challenging. The
original Just Cause had a game world of the same size, but it had generally been perceived
as rather empty, so we had to find better ways to produce content. While we ultimately
reached our goals and shipped a high-quality game, getting there was not all a success story.
It is also a story about poor tools, broken builds, horrible turnaround times, and the efforts
to salvage the situation.

4.2 Build system

4.2.1 Issues with the content build system

Our content build system had grown organically since the birth of the company. No one had
a complete picture of everything it did, and it was simply a collection of loose compilers.
The dependencies were unclear. Many compilers took results from other compiled data as
input. Since already compiled data from previous compiles typically was around this usually
worked, but could fail on clean builds, or even content was upgraded. Sometimes there was
even dependencies on data from another platform. For instance, it was found at one point
that doing a clean PS3 build required not only that the PS3 platform was built repeatedly
something like 3 to 5 times for all changes to propagated properly to all dependencies, but
it also required a complete build of Win32 data.

61



As a result of the poor to non-existing dependency management, our content builds
were frequently broken. Sometimes the compile seemingly succeeded, but data was broken.
Sometimes the build failed despite seemingly valid content. On top of this, the data building
process was slow, in the order of many hours. Consequently the turn-around time for data
builds tended to be overnight. If a check-in broke something, we would not know until the
next day when the nightly build was broken. And sometimes fixing the fault only resulted
in revealing the next broken piece of content. Occasionally a company-wide content check-in
stop had to be enforced to bring the data back to a working condition.

4.2.2 Untangling the mess

In parallel with the completion of Just Cause 2 the engine team took a holistic approach
on fixing the content build system. A framework was built for compilers and a dependency
walker that could figure out exactly what needed to be rebuilt and in which order. All
compilers were analyzed for whether they were still needed or could be removed, and what
their true dependencies were. Any sort of dependency loops were eliminated. With this in
place we could do proper incremental builds, which had the greatest impact on turn-around
times. But a lot of effort was also spent on removing the worst bottlenecks in the compilers
to further reduce build times. Many compilers were rewritten from scratch.

The perhaps greatest challenge was to restore trust in the pipeline. If people are doing
complete rebuilds because they don’t trust an incremental build to do the right thing, then
that’s a great loss for productivity. A build error should indicate broken data, and if some-
thing fails at runtime after a successful build, it should be assumed the code is to blame,
not the data. To ensure that the incremental build was working properly we set up build
servers to regularly do complete rebuilds and compare the results to the latest incremental
build. Whenever there was a mismatch the problem was promptly investigated and a proper
solution devised.

During the Just Cause 2 project missing data was replaced with placeholder content at
runtime. Missing models became pink boxes and missing textures were replaced with a pink
texture. This way the build could still run with broken data and hopefully be able to spot
broken data in game. This may seem like a sensible approach, but we have since abandoned
this idea. Instead we have worked hard to ensure that we avoid the problem to begin with,
by having the build system fail the build and have the content creator fix the problem before
it is ever checked in. The core philosophy is that if the content build succeeds, the resulting
data should be complete and working.

4.2.3 Code build system

A big problem is most large productions, whether it is a large game or any other sort of
big code-base, is that compiling and linking the executable can take a considerable amount

62



of time. Like at most game studios, our game is written primarily in C/C+-+, which is the
best choice for runtime performance, but somewhat problematic for build times. In the early
days we used third party tools like Incredibuild, which alleviated the problem somewhat
by distributing the build cost across all available machines in the studio, but it could still

take half an hour to do a clean rebuild of the game. This was of course a big problem for
productivity.

Our solution is not necessarily novel, but has worked out great for us. We built a custom
build system that batched up *.cpp files, by default in chunks of 30 files. Basically it creates
a new set of source files, containing nothing but #includes of the original source files. This
batching vastly reduces the amount of duplicated compiles, which is the fundamental flaw
of the C/C++ model. The number of translation units is drastically reduced, which also
speeds up the linking process, which often tends to be a significant portion of the build time.

Figure 77 shows the impact of batching on build performance. The build time was cut down
to a fraction of the original.

Build time in seconds
700

" Build time E)y C++ batch size on the code build ——

600 | |
500 | |
400 |
300 |
200 |

100

0 5 10 15 20 25 30 35 40 45 50
Batch size

As an added bonus, with more source baked into the same translation unit we get smaller

executables and faster code . The result is similar to what you get from “Whole Program

Optimization”, enabling for instance cross-module inlining, except for us it is not across the

whole program, but only across a batch. But since batches are parsed out from the source

directory tree, related files are typically batched together and we get much of the same
benefits.

On the downside, batching cpp files comes with a set of problems, primarily that code
“leaks” across units. This means that if only one file in a batch includes a header, it will
be visible to all source files. Similarly, statements like “using namespace Graphics;” in a

63



global scope will also leak. The result of this is that code that is broken sometimes actually
compiles, and only once a new file is added to the project and the batch arrangement shifts
does the problem potentially emerge. To deal with this problem, our auto-build servers also
regularly does unbatched builds to catch such errors. Typically the solution is to just include
the right header. In rare cases the batching has created hard to understand compile error
due to leaking, but overall the time lost to such debugging is vastly outweighed by the gain
in far faster build times.

Other things we have done over the last few years is to separate central systems into
shared libraries. Originally the project was essentially a large collection of source code, and
the engine was not really separated from the game. While there is more to be done in this
area, the current situation is much improved, with many core system separated into their
own modules, allowing easy sharing of functionality across projects and also speeding up
compilation by pulling those out of the project code base. Add hardware upgrades on top
of that, including SSD drives in all developer machines, we can now do a complete rebuild
of a current project in about 2.5 minutes.

4.3 Content Production

4.3.1 Modularization

Filling a world of this size with content required us to work in a modular fashion. Content was
created to be used repeatedly across the world. This means creating reusable chunks that can
be placed in the world and easily combined without too much customizations. Other than
collections of models it also included light sources, occlusion culling boxes and similar data.
The content was arranged such that the entity could be updated and all instances inherited
the new settings, unless they had been locally overridden. This allowed updated to art to
propagate to the whole world, while maintaining the possibility to do local customizations.

Artists are typically more passionate about art than performance, so placement of oc-
cluder boxes for our occlusion culling system was often relatively poor or non-existant at first.
However, this setup allowed occluder boxes to be placed into entities and thus automatically
placed in all locations that used it.

Some content is generated completely procedurally. For instance light poles and other
props around roads.

4.3.2 Landscape authoring

The landscape is divided into axis-aligned patches of a fixed size of 512m x 512m. We
refer to these as stream patches as they are stored and streamed like this at runtime. A

64



stream patch is a data container that holds not just the terrain vertex data and textures,
the landscape physics representation, as well as vegetation and various meta-data.

Each patch is stored separately on disk and in source control, which allows multiple artists
to work on the landscape separately without collisions, as long as they work in different areas
of the world. Our terrain is for the most part artist authored, using our in-house editor, but
we do support importing and exporting subsets of the data for editing in external tools or
crafting an initial terrain procedurally.

At runtime the terrain comes in two different representations, one fixed-size height-map
for the physics, and a graphical representation that has varying density depending on to-
pographical complexity, proximity to water, and other factors. The graphics representation
also has an elaborate LOD system. Editing the terrain is done at a fixed resolution, using
our custom editor, and a terrain compiler then computes the final in-game terrain. While the
editor uses the full game engine to render the terrain, the intermediate results in the editor
might differ somewhat compared to the in-game results after compilation and optimization.
For this reason, and practicality in general, we have tools for anchoring entities in the game
to the terrain. This means that you can place items on a newly edited terrain and even if
the compiler triangulates the area in a somewhat different fashion, the results will still be
good. In particular, there will not be any items hanging in thin air (which was otherwise
common in the early days of Just Cause 2), or worse, buried underground.

The vegetation is a combination of procedural and artist driven. Most of the vegetation
is procedurally placed. Normally it is not particularly important exactly where trees are in a
forest, so the system does the vast amount of vegetation placement automatically. You care
about the overall density and composition of trees. Artists set up properties that define the
vegetation in an area, and the system takes factors such as the slope, elevation and climate
zone (desert, jungle, artic etc.) into account and places trees and plants in a randomized but
deterministic fashion. We only store a minimum amount of data to reproduce the placement
and most placement is done with a seeded random function at runtime. Naturally we need
some level of artist control over where vegetation is placed. For instance, we do not want
trees to land inside of buildings, or in the middle of a road. Artists can set the density of the
vegetation in an area and naturally also completely remove vegetation where it is undesired.
The system also automatically removes vegetation under roads.

Sometimes artists need fine control over vegetation. For instance, you may need a tree at
a particular spot within a location. For this we have a manual vegetation placement system,
allowing the artists to place trees and plants much like any other game object.

For larger vegetation, such as trees and plants, there are four different systems for ren-
dering. Close to the camera trees are drawn as full-blown models. These render like any
other models and have several LOD steps. Beyond some distance the models are replaced
by simple impostors. At this distance an entire patch, with hundreds of trees, is drawn in a
single draw-call. Further out the impostors are rendered as a textured mesh layered on top
of the terrain. We sometimes refer to this as the “forest carpet”. Finally, to get a proper

65



silhouette at distant mountains we also have something we call “forest fins”. These

4.4 Bringing it to life

An important aspect of making a large game world is to make it come to life. Filling it with
content is very important, but it is not everything. There should also be things going on at
idle times, or in- between locations or outside of missions, and you need to preserve a sense
of a consistent and contiguous world even though you cannot keep everything in memory,
draw all objects or simulate every entity in the world. For this we have a number of systems
in place, both for the visual richness and for simulating an alive world.

4.4.1 World simulation

We use a world simulation system that always makes sure that something is going on in the
world. The system is driven by the context in which the player is. If you are somewhere
along a populated area, say in a village, there will be civilians walking around. Roads have
a moderate flow of assorted vehicles passing by. Once in a while an airplane will fly over.
In the water you will see boats. There is an important gameplay aspect of this too. It gives
you an steady supply of vehicles that you can use. This is especially important if you end
up crashing somewhere in the ocean. Swimming back to the shore is probably not going to
be very exciting for the player. So we specifically guide the system to have a boat of some
kind passing by relatively close soon thereafter that the player can hijack and get back into
action.

There is all sorts of animal life as well. There is always a handful of birds around, flies,
fish in the sea, and even scorpions. Except for the scorpions maybe, these are extremely
simple models. Birds are only a handful of polygons actually and costs nearly nothing to
render. But they have a large impact on bringing life to the world.

Another important element is the rolling day-night cycle. An interesting part of how this
works in Just Cause 2 is that time is not linear. The time cycle has been tweaked with various
considerations in mind, both visual and gameplay. It turns out most players enjoy daytime
more than nighttime. This is besides the fact that visibility is better during daytime, even
though we spent a lot of effort trying to highlight enemies at night through rim-lighting and
other tweaks without breaking the illusion of the scene being dark or enemies popping out
unnaturally from the environment. Nighttime is also visually less pleasing in general, except
perhaps in the city (which looks great when it lights up at night). So we let the player enjoy
the daytime for a longer time than they have to endure nighttime. But we also highlight
visually pleasing moments like sunset and sunrise by staying longer there, but once sun is
below the horizon, we fast-forward to full night.

66



4.4.2 Landmarks

We maintain a very large draw distance of 50,000m, which is actually enough to see any part
of the world from anywhere, ignoring occlusion of course. Standing on the top of the highest
mountain, or flying an airplane, you can see the entire world. Naturally can we only keep
the closest locations streamed in at any point. However, it is important both for gameplay
and visual richness that we are able to identify key locations even at a very large distance.
If you are standing on the top of a mountain, you should be able to see all the interesting
places around you, even if they are miles and miles away. This encourages the player to go
explore those areas and makes it less necessary to interrupt core gameplay by opening up
the map. It is more enjoyable for the player to have a visual target to aim for. For this we
created a landmark system.

Models are streamed in and out as needed. They come in different LODs for performance.
The landmark system takes over once the regular models in a location gets unloaded. This
replaces the entire location with a simple model capturing the essence of the location. Since
they are to be viewed from a rather large distance, the models are very low-res in terms of
polygon count and texture resolution. The landmark models are loaded at all times and are
(ignoring occlusion) visible at all times. Refer to Figures 4.1 and 4.2 for an example of the
iconic Mile High Club location visible over 25km.

4.4.3 Lighting

For lighting we had two different solutions for scale. The main system was for relatively
close distances where we needed proper lighting. In Just Cause 2 this was handled with a
world-space axis aligned tiled light indexing system. The details of this technique has been
previously covered in GPU Pro [1|. For our current lighting solution, which is based on
Clustered Deferred Shading, please refer to the Advances in Real-Time Rendering in Games
course [2]. In both the old and the new system we work on two different scales. The full
lighting is done up to a certain distance. In Just Cause 2 the limit was 300m. At the time
of this writing, we are using 500m. As lights approach this distance they begin to fade out
and smoothly transitions to a distant light system taking over the rest of the range.

The distant light system simulates lighting from static light sources. No actual lighting
is computed per se, it basically just highlights the light sources. At data compilation stage
all the static light sources in the world are assembled and split up into a grid structure. The
grid is used for frustum culling. Each grid cell is drawn with a single draw call. A very
compact vertex buffer encodes all lights with only a position, radius and color. The lights
are then rendered as simple point sprites. This highlights important locations, especially the
city and villages, and makes them look fully lit from a distance. This is not only very cheap
to render, but also very effective to bring a huge world to life. In Figure 4.3, note how all the
interesting locations are clearly visible at night, giving the player a clue where to go next, in
addition to a great visual effect. In Figure 4.4, note how the city stands out and looks alive.

67



Figure 4.1: Landmark visibility

Figure 4.2: Landmark distance

68



Figure 4.3: Distant lights highlighting the interesting locations

Figure 4.4: City highlighted by the distant light system

4.5 Summary

While in no way exhaustive, this article touches on some of the issues and some of the
solutions developed at Avalanche Studios for creating a vast game world.

4.6 References

[1] Persson, E., 2010. Making it large, beautiful, fast and consistent — Lessons learned
developing Just Cause 2. GPU Pro.

[2] Persson, E., 2013. Practical Clustered Shading. Advances in Real-Time Rendering in
Games. http://advances.realtimerendering.com/ (to appear)

69


http://advances.realtimerendering.com/

Chapter 5

Hardware Virtual Texturing

Partially Resident Textures provide direct hardware support for the majority of all tasks
present in the virtual texturing pipeline. Application developers are no longer required to
deal with managing of the page table, address translation and/or figuring out which texture
types need to be supported. The responsibility of managing the virtual nature of a texture
is moved toward the hardware and the driver.

Partially Resident Textures are supported in all AMD Radeon HD 7xxx GPUs. The
functionality is exposed to application developers via the AMD sparse texture OpenGL
extension.

PRT support in hardware relies on 3 core components:

e HW Virtual Memory subsystem
e Page Residency information propagation

e Driver stack support for efficient mapping/unmapping

5.1 Virtual Memory

Memory addresses used to fetch texture data on Radeon 7xxx GPUs are virtual. When
a shader attempts to fetch a texel from a texture using UV coordinates, a dedicated GPU
block first computes the virtual memory address of the texel (or a block of texels if filtering is
used). The address computation depends on the texture type, format, UV coordinate values,
desired mipmap level, offset, internal texture tiling, etc. The virtual memory address is then
fed to the virtual memory subsystem. The VM subsystem performs the virtual-to-physical
address translation and then initiates a read operation from the physical memory. When the
read completes, the texel data is returned to the shader.

70



The virtual-to-physical address translation inside the VM subsystem leverages a dedi-
cated hardware page table. This is in stark contrast to software virtual texturing techniques
in which the page table is just another texture managed by the application. A dedicated
hardware page table provides several benefits when compared to a software one.

Unified format When dealing with software (texture) page tables, the application must
decide on its size, format, etc. None of this is required with hardware page tables as they
have a unified format and support all texture types, formats and sizes. The advantage of
this is that applications can use different formats for different purposes, without having to
rewrite their address encoding schemes.

The only downside of the unified format is that texture tiles might have different dimen-
sions based on what type/format they are using. In the current hardware, the page size is
fixed to 64kB, which means that a 32-bit RGBAS texture will have tile dimensions of 128 x
128 texels. PRT tile dimensions for uncompressed 2D textures are listed in Table 6.1.

Texture BPP | PRT Tile Width | PRT Tile Height
128 64 64
64 128 64
32 128 128
16 256 128
8 256 256

Figure 5.1: PRT tile dimensions for uncompressed 2D textures.

Filtering Hardware page tables provide support for all texture filtering modes. With
software page tables, certain filtering modes (e.g. trilinear or anisotropic filtering) are very
difficult to implement in a robust fashion. As discussed in the previous chapter, this is
because the physical texture coordinates are not contiguous across page boundaries. The
hardware is not aware of any page boundaries and therefore cannot filter across pages. On
the other hand, PRT-enabled hardware supports filtering across page boundaries without
issues.

Two-level structure Software page tables used in virtual texturing are traditionally only
one-level (in the virtual memory terminology, they only contain the PTEs). This impacts
their sizes and does not allow for any kind of compression. Hardware page tables can be
two-level (they contain both PDEs and PTEs), which decreases their memory footprint if
the virtual address space is only sparsely populated.

Address translation performance Sampling from a virtual texture with software page
tables amounts to a texture fetch using virtual texture coordinates followed by another

71



texture fetch using physical texture coordinates. Both of these require roundtrips between
the shader and memory, which can incur significant performance penalties should cache
trashing occur. With hardware page tables, the address translation happens as a part of
the texture fetch that uses virtual texture coordinates directly, diminishing the bandwidth
requirements by 50% in the general case.

Simplified programming When dealing with software page tables, the application at-
tempting to map/unmap a page needs to take care of the page table updates. Hardware page
tables are programmed by the SW driver stack when the client application commits/clears
individual texture tiles. The application is only required to specify which parts of the texture
should be resident for the upcoming commands.

Caching efficiency Hardware page tables can take advantage of special HW caches to
speed up lookups and the virtual-to-physical address translation. This is not possible with
software page tables, as they go down the traditional texture fetch hardware path.

Consider the following fragment shader that performs sampling using a software (texture)
page table:

uniform sampler2D samplerPageTable; // page table

uniform sampler2D samplerPhysTexture; // physical texture

in vec4 virtuv; // virtual texture coordinates
out vec4 color; // output color

vec2 getPhysUV(vec4 pte); // translation function

void main()

vec4d pte = texture(samplerPageTable, virtUV.xy); // 1
vec2 physUV = getPhysUV(pte); // 2
color = texture(samplerPhysTexture, physUV.xy); // 3

}

Figure 5.2 illustrates what happens inside the hardware during software-based virtual-
to-physical address translation operation. In the first texture fetch invocation (line 1), the
virtual texture coordinates are used to look up the PTE (page table entry). The PTE is an
application-specific data structure stored in the page table texture. In the next step (line
2), the PTE is converted to physical texture coordinates, again by an application-specific
function that deals with the encoding scheme, filtering, formats, etc. Finally (line 3), the
physical texture coordinates are used to fetch the texture data.

From the hardware’s point of view, both texture fetches (lines 1 and 3) are pretty much
identical except that they are accessing different textures. One important detail to notice
is that both texture fetches are dependent, i.e. the second one cannot be launched before

72



the first one completes. Dependent texture fetches are generally not a good approach when

high-performance is desirable.

texture(samplerPageTable, virtUV.xy);

. texture
virtuv J{ T data

Texture Block

vecd pte =

memory texture
address v data

Memory
Controller

physical texture
address data

v Physical Memory

color = texture(samplerPhysTexture, physUV.xy);
texture
physUv J{ T data

Texture Block

memory texture
address v data

Memory
Controller

physical texture
address data

v Physical Memory

Figure 5.2: Virtual-to-physical address translation using a software (texture) page table and

two dependent texture fetches.

73



Now consider a different fragment shader that takes advantage of a PRT-enabled texture
fetch (the sparseTexture() texture sampling instruction is the new instruction introduced in
the AMD _sparse texture OpenGL extension — details in Chapter ?77?):

uniform sampler2D samplerVirtTexture;

in vec4 virtuv; // virtual texture coordinates
out vec4 color; // output color

void main()

// sparse texture fetch
int code = sparseTexture(samplerVirtTexture, virtUV.xy, color);

}

The shader no longer uses two dependent texture fetches, but instead, the virtual-to-
physical address translation is performed directly in hardware based on the virtual texture
coordinates passed to the sampling function. The hardware function is depicted in Figure 5.3.

int code = sparseTexture(samplerVirtTexture, virtUV.xy, color);
. texture virtual
virtUv J{ T data address

} Texture Block

XX

virtual texture
address data .
physical

T address <

Controller _ X

- X

X

physical texture X
address data Page Table

Physical Memory

Figure 5.3: Virtual-to-physical address translation using a hardware page table.

74



5.2 Page/Tile Residency Information

The previous section introduced the concept of hardware page tables and discussed their
advantages in the context of fetching data from pages that we know are resident in GPU
memory. However, a completely different class of algorithms can be based on the idea of
determining page residency information at runtime.

Page fault is a virtual memory event that occurs when the client attempts to translate a
virtual address that does not have an entry in the page table (i.e. the page is not mapped
to any physical address). In virtual texturing systems, it is very convenient when a shader
is able to determine page residency status in an efficient manner.

Querying page residency status from software page tables is straightforward — the shader
performs a texture fetch from the page table texture (as in Figure 5.2) and then tests the
resulting address for validity (an application specific value can be stored in the page table
to indicate unmapped access). The cost of the texture fetch is equal to the cost of any other
texture fetch.

With PRTs, the hardware directly supports propagating of the page residency information
from the page table to the shader core. In other words, if the shader attempts to read from
an unmapped virtual address, the hardware will report failure without having to perform a
read from the texture memory. The return code is referred to as a NACK in the rest of this
document. The sequence of events is illustrated in Figure 5.4.

5.3 Sparse Texture Use Cases & Future Development

In the first part of this chapter, we cover some use cases of PRTs in the real world and
demonstrate techniques that may be implemented using the PRT feature. Use cases are
enumerated below. In a second part of this chapter, we address some current limitations of
the approach implemented in AMD’s hardware, and some thoughts on future directions.

5.3.1 Very Large Texture Arrays

First, we discuss the use of very large texture arrays as an application managed cache of
textures that may be used to virtually eliminate texture binds in a real-time application.
Under this scheme, one, very large texture array is allocated for each class of texture (say,
diffuse albedo, specular coefficients, normal maps, etc.). These array textures are bound and
left bound for the lifetime of the application. Each material in a scene is assigned a slice of
the array. On current hardware, we are able to support more than 8,000 slices in a single
texture array, allowing more than 8,000 unique materials to be represented in a single array.

75



int code = sparseTexture(samplerVirtTexture, virtUV.xy, color);

virtuv J« )“\ NACK
] virtual
‘ Texture Block | address =

— X |
virtual NACK
address
_ NACK
‘ Memory _— X
Controller < X
- X
X
X
Page Table

Physical Memory

B | [ [T

Figure 5.4: NACK propagation.

Of course, a moderate sized array texture (of the order of 2K x 2K texels) with 8,000 slices
consumes more than 10s of gigabytes of address space and so it is impossible to ensure that
all of the texture data is resident at all times.

However, assuming that the live data set for a single rendering call can be made resident
(i.e., it fits in GPU memory), several advantages arise from using texture arrays with sparse
textures. The first of these is that the layout of textures in memory is consistent between
materials. All materials have access to their diffuse albedo, specular coefficient and normal
map textures if they have them. For those materials that do not have some of those com-
ponents, then those slices of the array may be left non-resident without consuming precious
physical memory — only virtual memory is reserved. This simplifies shader development as
it allows texture layout to be declared boiler-plate style.

The second, and perhaps more important aspect to this approach is that the texture
array can be considered an application-controlled cache. When a material is about to be
rendered, the application must ensure that the relevant slices of the appropriate texture
arrays are present in GPU memory. However, there is no need to bind new textures as all of
the texture data is actually part of the same set of array textures. As materials are rendered,
new slices of the array are uploaded to the GPU as needed and then left resident. If the same
slice is needed again, then it is already resident and no texture upload or rebind operation is
necessary. If, during texture upload, an out-of-memory error is detected, slices that are no
longer needed may be discarded and a new attempt to make pages resident made. If, during

76



the rendering of a single frame, all textures needed fit into GPU memory, then nothing is
discarded, everything remains resident and no paging is necessary on the next frame. Thus,
the subsequent frame may be rendered with no texture binds at all.

Once the need for binding textures between draw commands is eliminated, several com-
mon optimizations found in modern realtime graphics engines become redundant. For ex-
ample, engines often sort or bin geometry in order to reduce state changes. As a change
in texture is no longer considered a state change, this sorting becomes less important. As
another example, large, complex models consisting of surfaces with many materials are often
broken into several smaller parts for rendering. As all of the texture data for these parts
can now be made resident simultaneously, this can be avoided by simply attaching a per-
chunk material ID to what would previously have been separate drawing commands. Other
graphics features such as instancing become more applicable here.

5.3.2 Incomplete Mip-map Chains

A second technique that becomes possible with sparse textures is the use of incomplete mip-
map chains. These may be used for procedurally generated textures or streaming texture data
from networks, optical drives or other slow media. Under such circumstances, a minimum
level of detail is made resident before scene rendering begins. This level can be chosen by
the developer, but due to artifacts of the PRT implementation, is likely to be a minimum
of 64KB per texture. This data may, perhaps, be kept closer to the engine in the form of a
decompressed base-level texture set, or a set of texture data that is downloaded first. During
rendering, a record is made of which textures are actually necessary during scene traversal.
This could be done on the CPU based on some simple CPU-based rendering, through GPU
assisted techniques such as occlusion queries, or entirely on the GPU by writing texture
access data into images in GPU memory. The application then periodically examines the
list of live textures and brings them into GPU memory on demand.

On the shader side, an attempt is made to fetch the textures that are required to render
the scene. If the necessary textures are not resident in GPU memory, a signal is returned
to the shader to indicate so, and the shader begins traversing the mip-map pyramid until a
resident texel is found. Because the application made all of the lowest resolution mip-map
levels resident during initialization, it is guaranteed that some reasonable texture data is
found during this pyramid walk. Over the next few frames, texture data becomes resident —
either by loading it from the slow resource, or by generating it on the fly using the CPU or
even the GPU itself. Non-resident textures are displayed as blurry, downsampled versions
of their higher resolution counterparts at first, and over the course of one or more frames,
become sharper. Because no physical address space is required for non-resident texture data,
the largest resolution layer of the mip-map pyramid need not even exist if it is known a-priori
that it will never be accessed by the texture. The same algorithm follows, though; traverse
the mip-map pyramid, starting from the desired LoD until a resident texel is found.

77



5.3.3 Truly Sparse Textures

Truly sparse textures are another excellent use case for PRT. For example, consider a tra-
ditional texture atlas. In general, tools must find a balance between tightly packing atlas
components in order to conserve empty space, and leaving enough space between those com-
ponents to avoid bleeding during the generation of the mip-map chain. With PRT, this is
not as necessary. Large regions of unused space may be left empty between components of
a texture atlas. Any 64KB chunk of texture can be ignored as it will not be allocated in
physical storage. Large, irregular shapes may be created in the atlas without worrying about
filling the voids in the convex or even hollow outlines. Sparsity is even more relevant in 3D
and volumetric data-sets. A 3D scan of a large volume can often consume many gigabytes
of storage, but contain large homogeneous regions and even voids. By using a PRT to store
these types of texture, larger volumes that would previously have been impossible to ren-
der without complex shader driven page tables may be simply treated as large contiguous
textures. Those regions that are completely empty may be left entirely un-allocated. For
those regions where lower frequency or even single-valued data is acceptable, the very lowest
level of the 3D mip-map pyramid may be used. Use in ray-marching or slice-based rendering
algorithms of these apparently complete data sets is then trivial.

5.4 Current Limitations and Thoughts on the Future

The PRT feature we are shipping in hardware is certainly very powerful, but does not address
all the wants or needs of the current SVT community. In particular, the maximum texture
size has not changed - it is 16K x 16K x 8K texels. The limit lies in the precision of
the representation of texture coordinates with enough sub-texel resolution for artifact-free
linear sampling. To some degree, this may be easy to lift, but we are seeing requests from
developers to go as high as 1M x 1M or more in a single texture. This presents significant
architectural challenges and may or may not be feasible in the near term.

It is also easy to see that with large textures and high precision texel formats, we start to
exhaust even the virtual address space of the GPU. The largest possible texture is 16K x 16K
x 8K x 16 bytes per texel. This amounts to 32 terabytes of linear address space. This far
exceeds the addressable space available to the GPU, irrespective or residency. Furthermore,
as it is backed by the virtual memory subsystem, page table entries need to be allocated for
those pages referenced by sparse textures. The approximate overhead of the page tables for
a virtual allocation on current-generation hardware is 0.02% of the virtual allocation size.
This does not seem like much and for traditional uses of virtual memory, it is not. However,
when we consider ideas such as allocation of a single texture which consumes a terabyte of
virtual address space, this overhead is 20GB — much larger than will fit into the GPU’s
physical memory. To address this, we need to consider approaches such as non-resident page
tables and page table compression.

78



There are several use cases for PRT that seem reasonable but that come with subtle
complexities that prevent their clean implementation. One such complexity is in the use
of PRTs as renderable surfaces. Currently, we support rendering to PRTs as color surfaces.
Writes to un-mapped regions of the surface are simply dropped. However, supporting PRTs
as depth or stencil buffers becomes complex. For example, what is the expected behavior
of performing depth or stencil testing against a non-resident portion of the depth or stencil
buffer? Also, supporting rendering to MSAA surfaces is not well supported. Because of
the way compression works for multisampled surfaces, it is possible for a single pixel in a
color surface to be both resident and non-resident simultaneously, depending on how many
edges cut that pixel. For this reason, we do not expose depth, stencil or MSAA surfaces as
renderable on current generation hardware.

The operating system is another component in the virtual memory subsystem which must
be considered. Under our current architecture, a single virtual allocation may be backed
by multiple physical allocations. Our driver stack is responsible for virtual address space
allocations whereas the operating system is responsible for the allocation of physical address
space. The driver informs the operating system how much physical memory is available and
the operating system creates allocations from these pools. During rendering, the operating
system can ask the driver to page physical allocations in and out of the GPU memory. The
driver does this using DMA and updates the page tables to keep GPU virtual addresses
pointing at the right place. During rendering, the driver tells the operating system which
allocations are referenced by the application at any given point in the submission stream and
the operating system responds by issuing paging requests to make sure they are resident.
When there is a 1-to-1 (or even a many-to-1) correspondence between virtual and physical
allocations, this works well. However, when a large texture is slowly made resident over time,
the list of physical allocations referenced by a single large virtual allocation can become very
long. This presents some performance challenges that real-world use will likely show us in
the near term and will need to be addressed.

79



Chapter 6

High Quality Software and Hardware
Virtual Textures

6.1 High Quality Software Virtual Textures

Modern simulations increasingly require the display of very large, uniquely textured worlds
at interactive rates. In large outdoor environments and also high detail indoor environ-
ments, like those displayed in the computer game RAGE, the unique texture detail requires
significant storage and bandwidth. Virtual textures reduce the cost of unique texture data
by providing a sparse representation which does not require all of the data to be present
for rendering, while leaving the majority of the texture data in highly compressed form on
secondary storage.

A virtual texture is divided into small pages that are loaded into a pool of resident
physical pages as required for rendering. In RAGE these small pages are square blocks of
128 x 128 texels and the pool with physical pages is a fully resident texture that is logically
subdivided into such square blocks of texels. While a virtual texture can be very large (say a
million pages) and is never fully resident in video memory, the texture that holds the pool of
physical pages is fully resident but much smaller (typically only 4096 x 4096 texels or 1024
pages). Virtual texture pages are mapped to physical texture pages, and during rendering
virtual addresses need to be translated to physical ones.

Virtual textures differ from other forms of virtual memory because first, it is possible to
fall back to slightly blurrier data without stalling execution, and second, lossy compression of
the data is perfectly acceptable for most uses. Implementations of software virtual textures
exploit these key differences between virtual textures and other forms of virtual memory to
maintain performance and reduce memory requirements at the cost of quality. Implement-
ing virtual textures without special hardware support is challenging and inevitably comes
down to finding the right trade between performance, memory requirements, and quality.

80



While the implementation of software virtual textures in RAGE emphasized performance,
the visual fidelity of the virtual textures in RAGE can be improved in several ways that
trade performance and memory for quality.

6.1.1 Explicit Page Table LOD

The high performance software virtual textures implemented in RAGE use page table tex-
tures to perform the virtual to physical translation. Such a page table texture must be
point-sampled to retrieve individual page mappings without mangling the data by blending
between adjacent but independent page mappings. Using the texture hardware to point-
sample a page table texture does not necessarily result in a mapping to a physical texture
page with the appropriate texture detail for the anisotropic texture fetch that follows. With-
out any adjustments, the page table lookup returns a mapping to a physical texture page that
is typically too coarse and provides too little detail. To provide more detail the page table
lookup can be biased with the base-two- logarithm of the maximum anisotropic footprint.
This results in the page table lookup returning a mapping to a texture page with enough
detail for the anisotropic filter to work well on surfaces at an oblique angle to the viewer
where the sampled footprint is maximized (anisotropic). However, this can cause noticeable
shimmering or aliasing on surfaces that are orthogonal to the view direction where the sam-
pled footprint is minimal (isotropic). To improve the quality, the correct LOD for the page
table texture lookup can be calculated in the fragment program based on the anisotropy.
The calculated LOD can then be explicitly passed to the page table texture lookup. The
calculation of the page table LOD can be found below. Calculating the page table LOD for
every fragment adds significant fragment program complexity.

const float maxAniso = 4;

const float maxAnisoLog2 = log2( maxAniso );

const float virtPagesWide = 1024;

const float pageWidth = 128;

const float pageBorder = 4;

const float virtTexelsWide = virtPagesWide * ( pageWidth - 2 x pageBorder );

vec2 texcoords = virtCoords.xy x virtTexelsWide;

vec2 dx
vec2 dy

= dFdx( texcoords );
= dFdy( texcoords );
dot( dx, dx )
dot( dy, dy )

float px =
float py =
float maxLod

.5 * log2( max( px, py ) ); // log2(sqrt()) = 0.5xlog2()
float minLod ;

0
0.5 * log2( min( px, py ) )

float anisolLOD = maxLod - min( maxLod - minLod, maxAnisolog2 );

In RAGE texture feedback is rendered to a separate buffer that, for the virtual texture
pages used in the current scene, stores the virtual page coordinates (x,y), desired mip level,
and virtual texture ID (to allow multiple virtual textures). This feedback data is then used
to make those virtual texture pages resident that are needed to render the current scene.
Interestingly, the calculation of the desired mip level for texture feedback is equivalent to the
calculation of the page table LOD. While in RAGE the feedback was rendered in a separate

81



pass, the feedback can also be generated during normal rendering by using multiple render
targets. This allows the texture LOD to be calculated once after which it can be used for
both texture feedback and the page table texture lookup.

6.1.2 Tri-Linear Filtering and LOD Clamping

It will happen sometimes that, despite all efforts, a significant latency will be incurred
between the time that a texture page is needed and the time that the data for it is available.
This can result in an unpleasant "pop" when the desired LOD for a page is off by more than
one level and the right LOD suddenly becomes available.

If tri-linear filtering with two virtual to physical translations is employed, then it is
possible to include some delay in the transition from coarser to finer mip level when the
desired level is not sufficiently close to the currently displayed level. Tri-linear filtering with
two virtual to physical translations is expensive because it requires double the number of page
table and physical texture lookups. Tri-linear filtering by blending between two anisotropic
texture lookups does, however, provide a noticeable quality improvement.

Gradually blending in finer detail requires a minimum LOD texture with one texel per
virtual page. The texels of the minimum LOD texture are gradually adjusted to reveal more
and more detail after a new texture page has been made resident. The minimum LOD
texture is used to clamp the texture lookup in the fragment program, forcing a gradual
transition to finer detail as opposed to a sudden change which is perceived as a “pop”.

uniform sampler2D pageTable; // RGBA-FP32 - { scaleS, scaleT, biasS, biasT }
uniform sampler2D minLodTexture; // R-8 - { minimum-LOD }

uniform sampler2D physicalTexture; // RGBA-8 - { red, green, blue, alpha }

in vec4 virtCoords; // virtual texture coordinates

out vec4 color; // output color

void main()

{

const float maxAniso = 4;

const float maxAnisoLog2 = log2( maxAniso );

const float virtPagesWide = 1024;

const float pageWidth = 128;

const float pageBorder = 4;

const float virtTexelsWide = virtPagesWide * ( pageWidth - 2 * pageBorder );

vec2 texcoords = virtCoords.xy * virtTexelsWide;

vec2 dx
vec2 dy

= dFdx( texcoords );
= dFdy( texcoords );
float px = dot( dx, dx );
float py = dot( dy, dy );

float maxLod
float minLod

0.5 * log2( max( px, py )
0.5 * log2( min( px, py )

// log2(sqrt()) = 0.5%log2()

);
);
float anisoLOD = maxLod - min( maxLod - minLod, maxAnisolLog2 );

const float maxVirtMipLevels = 16;
float clampLod = texture( minLodTexture, virtCoords.xy ).x * maxVirtMipLevels;
anisoLOD = max( anisolLOD, clampLod );

82



vec4 scaleBiasl
vec4 scaleBias2

textureLod( pageTable, virtCoords.xy, anisolLOD - 0.5 );
textureLod( pageTable, virtCoords.xy, anisoLOD + 0.5 );

vec2 physCoordsl
vec2 physCoords2

virtCoords.xy * scaleBiasl.xy + scaleBiasl.zw;
virtCoords.xy * scaleBias2.xy + scaleBias2.zw;

vec4 colorl
vec4 color2

texture( physicalTexture, physCoordsl );
texture( physicalTexture, physCoords2 );

float trilinearFraction = fract( anisolLOD );

color = mix( colorl, color2, trilinearFraction );

}

The above code shows the complete fragment program that combines the explicit page
table LOD calculation from the previous section (in blue), clamping of the page table LOD
using a minimum LOD texture (in red), and tri-linear filtering using two page table lookups
and two physical texture lookups (in green).

6.1.3 Texture Upsampling

A common approach to increase the perceived detail on textured surfaces is to add detail
textures. A detail texture is a small texture with high frequency data that can be easily tiled
many times over many surfaces. Detail textures are blended over regular textures to give
textured surfaces a more detailed appearance without increasing the texture resolution. Not
only are detail textures yet another specialized form of texture compression, detail textures
also have several limitations and disadvantages such as: local modulation, limited variety,
creation cost, selection cost and run-time cost.

Instead of using manually created and applied detail textures, the texture detail on
rendered surfaces can also be programmatically enhanced. Normally the texture hardware
uses a bilinear filter for texture magnification during rendering. This filter is implemented
in graphics hardware and is very fast. Unfortunately, bilinear filtering tends to produce
interpolation artifacts such as blurring and edge halos. More advanced upsampling filters
and texture enhancement algorithms can be implemented in a fragment program. However,
programmatic upsampling and enhancement of texture data in a fragment program is usually
very costly.

Virtual textures make it possible to upsample and enhance existing texture data without
increasing the per fragment rendering cost. A virtual texture can be extended to have many
more mip levels for which actual source data does not exist. A texture page for which no
original source data is available can then be generated from a coarser parent page that does
have source data. As opposed to upsampling the texture data for every rendered fragment,
the cost is amortized by only upsampling and enhancing texture data once, as the view
approaches a surface and the texture pages for that surface are made resident. Various
interesting upsampling algorithms can be used to generate additional detail.

83



6.1.4 Direct Texture Access

On systems with direct access to texture memory, the physical texture pages and page table
textures can be updated asynchronously to the GPU. However, on systems where the only
access to video memory is through an API like OpenGL or DirectX, the physical texture
and page table texture updates cannot generally overlap with rendering and face significant
APT overhead. For instance, in RAGE more than 6 milliseconds of CPU time may be spent
uploading and/or copying texture data through the graphics driver.

For improved memory access patterns and consequently improved performance, textures
are usually stored in tiled formats. Tiling of textures improves the spatial locality of the
texture data for typical texture sampling patterns during rendering. Texture tiling is one of
the reasons direct access to texture memory is not generally supported. By allowing direct
texture access, the texture needs to be either stored in a linear (non-tiled) format or the
application needs to be aware of the particular tiled format being used. More importantly
by allowing direct texture access it is no longer possible to change the tiled format under-
neath an application. Being able to change the tiling formats for existing applications can be
important to achieve performance gains by developing new tiling formats that are designed
specifically for the memory architecture of new graphics hardware. However, while these
performance gains may be very important for some applications, other applications may not
benefit as much. For instance, the virtual textures in RAGE do not appear to benefit as
much from different tiled formats. In particular when the texture data is stored in a block
compression format such as DXT/S3TC/ETC, the benefits appear to be small because the
block compression formats already improve the spatial locality by encoding small blocks of
texels. Sampling of page table textures during rendering always exhibits very good locality
and storing them in a linear format has good performance. At the same time, not allow-
ing direct texture access and forcing texture updates through the driver causes significant
overhead.

Direct access to tiled textures is possible as long as the application is aware of the
particular tiled format that is being used. For instance, in RAGE the texture transcoders
can be easily modified to write directly to textures in a tiled format as long as the tiled
format is clearly specified and does not change after the release of the game. While there
may be a noticeable performance delta between linear and tiled textures, there is usually a
much smaller performance delta between different tiled formats. In other words, having a
couple of standardized tiled texture formats seems particularly useful.

6.2 Hardware Virtual Textures

When RAGE first shipped there was no special hardware support for virtual textures. The
virtual to physical address translation had to be implemented in a fragment program through
page table and mapping textures. The latest AMD graphics hardware, however, supports

84



hardware virtual textures also known as Partially Resident Textures (PRTs). Instead of using
page table and mapping textures the hardware can perform the virtual to physical translation
using the page tables of the underlying virtual memory system. Taking advantage of this
special hardware does require some changes to the virtual texture system in RAGE.

In RAGE, multiple virtual textures can be mapped to the same pool with physical pages
or a single virtual texture can be mapped to multiple pools with physical pages. When using
PRTs, a virtual texture is not mapped to one of the existing physical pages pools. Instead,
a new physical pages pool is allocated for each virtual texture. Such a private pool does not
use a regular small texture but instead the pool is implemented as a PRT with the same
size as the virtual texture. Instead of mapping and unmapping texture pages using physical
coordinates, pages are mapped and unmapped using virtual coordinates. The hardware then
takes care of the virtual to physical address translation and there is no need for page table
textures. This is an elegant solution that requires minimal changes throughout the RAGE
virtual texture system. Nevertheless, various changes are necessary to properly support
PRTs.

6.2.1 PRT Page Management

In RAGE physical texture pages are allocated from fixed size physical textures. These
physical textures tend to fill up quickly and once all pages from a physical texture have been
allocated, an existing page will have to be unmapped and freed before a new texture page
can be allocated. The page that is unmapped and freed may have been used for a different
virtual texture when multiple virtual textures map to the same physical texture.

A hardware virtual texture in the form of a PRT can have as many pages resident as
there is physical memory available. When a PRT page is mapped the memory allocation
will either succeed or fail based on whether or not physical memory is available. To make
sure the virtual texture pages for a particular scene can be made resident, it is desirable
to track all the resident texture pages and unmap and free those texture pages that are no
longer needed. To allow a PRT page to be mapped without running out of physical memory,
a page management system must be implemented that can track and if necessary unmap
and free any PRT page from any virtual texture. With such a page management system in
place, allocating a physical page for one PRT may cause a page from another PRT to be
unmapped and freed.

6.2.2 PRT Size Limitation

While a virtual texture in RAGE can be up to 128k x 128k, the maximum size of a PRT
is only 16k x 16k. As a result, a large virtual texture cannot be mapped directly to a
PRT. A virtual texture that is larger than 16k x 16k needs to somehow map to multiple
PRTs. One solution is to use a Partially Resident Texture Array. This allows a virtual

85



texture to be logically broken up into 16k x 16k tiles that map to the PRTs stored in an
array. In a fragment program, the array index and the texture coordinates within the PRT
can be calculated from the texture coordinates that address the full virtual texture through
multiplication by the size of the full virtual texture divided by 16k. The integer parts can
then be used to calculate the array index and the fractional parts are the texture coordinates
within the PRT.

To allow proper texture filtering without seams, this does, however, require that no
texture island crosses a 16k boundary on the full virtual texture. These texture islands
are chunks of geometry that are contiguous in texture space, often called "charts" in an
"atlas" in literature. Texture islands larger than 16k x 16k will also have to be broken up
into multiple islands. The algorithm that creates the layout of a virtual texture has to be
modified to split up islands that are too large, and to keep texture islands from crossing 16k
boundaries on the full virtual texture. Splitting up texture islands larger than 16k x 16k is
not always easy without introducing noticeable seams. Fortunately, few texture islands are
actually larger than 16k x 16k. Making sure that texture islands never cross a 16k boundary
on the virtual texture is much easier and can, for instance, be done by pre-allocating the
texels on the 16k boundaries such that those texels cannot be allocated for any of the actual
texture islands.

6.2.3 Compressed PRT Pages

PRT texture pages do not have a fixed size in texels. Instead PRT texture pages always have
a fixed size in memory which on current AMD graphics hardware is 64 kB. As a result, the
size in texels of a texture page varies based on the texture format and compression.

Format Tile Width | Tile Height
uncompressed RGBA-8 | 128 128
DXT5/BC3 compressed | 256 256
DXT1/BC1 compressed | 512 256

Table 6.1: Tile dimensions for compressed 2D textures.
To keep things simple, uncompressed RGBA-8 texture pages can be used for a first pass

implementation of PRTs. To support DX'T compression, multiple texture pages on disk have
to be transcoded and uploaded simultaneously.

6.2.4 Borderless PRT Pages

One of the unfortunate complexities of software virtual textures without special graphics
hardware support is that the texture unit, being unaware of the actual texture pages, cannot
filter across page boundaries. Texture pages that are adjacent in virtual texture space do

86



not necessarily map to physical pages that are next to each other, let alone close to each
other in the physical texture. In order to properly support hardware bi-linear filtering of
software virtual textures, each physical texture page must have a border of texels around it.
Hardware accelerated anisotropic filtering of software virtual textures can be supported if
the page border is wider than one texel.

With virtual textures supported in hardware in the form of PRTs there is no need for page
borders. However, the virtual texture pages in RAGE are stored on disk with page borders.
The texture pages in RAGE are 128 x 128 texels with a 120 x 120 payload surrounded by a
4 texel border. One option is to upsample the center 120 x 120 to 128 x 128 when a page is
transcoded from highly compressed form on disk to a format the GPU can use directly for
rendering. Unfortunately this causes noticeable blurring due to the non-integer upsampling
ratio. For the best quality the virtual textures will have to be reformatted to strip the
borders and to re- subdivide the virtual texture into texture pages with a full 128 x 128
payload.

87



	1 Introduction
	1.1 Virtual Worlds

	2 Planetary Scale Datasets
	3 World-Scale Terrain Rendering
	3.1 Introduction - Massive worlds render massive quantities of terrain
	3.2 Organizing and processing terrain data
	3.3 Tile selection for rendering
	3.4 Life of a tile
	3.4.1 Create imagery skeletons
	3.4.2 Request
	3.4.3 Transform
	3.4.4 Create resources
	3.4.5 Replacement

	3.5 Terrain and imagery shaders
	3.6 Horizon culling
	3.7 Map reprojection on the GPU
	3.8 Acknowledgements

	4 Populating a Massive Game World
	4.1 Introduction
	4.2 Build system
	4.2.1 Issues with the content build system
	4.2.2 Untangling the mess
	4.2.3 Code build system

	4.3 Content Production
	4.3.1 Modularization
	4.3.2 Landscape authoring

	4.4 Bringing it to life
	4.4.1 World simulation
	4.4.2 Landmarks
	4.4.3 Lighting

	4.5 Summary
	4.6 References

	5 Hardware Virtual Texturing
	5.1 Virtual Memory
	5.2 Page/Tile Residency Information
	5.3 Sparse Texture Use Cases & Future Development
	5.3.1 Very Large Texture Arrays
	5.3.2 Incomplete Mip-map Chains
	5.3.3 Truly Sparse Textures

	5.4 Current Limitations and Thoughts on the Future

	6 High Quality Software and Hardware Virtual Textures
	6.1 High Quality Software Virtual Textures
	6.1.1 Explicit Page Table LOD
	6.1.2 Tri-Linear Filtering and LOD Clamping
	6.1.3 Texture Upsampling
	6.1.4 Direct Texture Access

	6.2 Hardware Virtual Textures
	6.2.1 PRT Page Management
	6.2.2 PRT Size Limitation
	6.2.3 Compressed PRT Pages
	6.2.4 Borderless PRT Pages



